2 resultados para Proportional

em Universitat de Girona, Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most psychological tests and questionnaires, a test score is obtained by taking the sum of the item scores. In virtually all cases where the test or questionnaire contains multidimensional forced-choice items, this traditional scoring method is also applied. We argue that the summation of scores obtained with multidimensional forced-choice items produces uninterpretable test scores. Therefore, we propose three alternative scoring methods: a weak and a strict rank preserving scoring method, which both allow an ordinal interpretation of test scores; and a ratio preserving scoring method, which allows a proportional interpretation of test scores. Each proposed scoring method yields an index for each respondent indicating the degree to which the response pattern is inconsistent. Analysis of real data showed that with respect to rank preservation, the weak and strict rank preserving method resulted in lower inconsistency indices than the traditional scoring method; with respect to ratio preservation, the ratio preserving scoring method resulted in lower inconsistency indices than the traditional scoring method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition