7 resultados para Polynomial-time algorithm
em Universitat de Girona, Spain
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
In this article, a new technique for grooming low-speed traffic demands into high-speed optical routes is proposed. This enhancement allows a transparent wavelength-routing switch (WRS) to aggregate traffic en route over existing optical routes without incurring expensive optical-electrical-optical (OEO) conversions. This implies that: a) an optical route may be considered as having more than one ingress node (all inline) and, b) traffic demands can partially use optical routes to reach their destination. The proposed optical routes are named "lighttours" since the traffic originating from different sources can be forwarded together in a single optical route, i.e., as taking a "tour" over different sources towards the same destination. The possibility of creating lighttours is the consequence of a novel WRS architecture proposed in this article, named "enhanced grooming" (G+). The ability to groom more traffic in the middle of a lighttour is achieved with the support of a simple optical device named lambda-monitor (previously introduced in the RingO project). In this article, we present the new WRS architecture and its advantages. To compare the advantages of lighttours with respect to classical lightpaths, an integer linear programming (ILP) model is proposed for the well-known multilayer problem: traffic grooming, routing and wavelength assignment The ILP model may be used for several objectives. However, this article focuses on two objectives: maximizing the network throughput, and minimizing the number of optical-electro-optical conversions used. Experiments show that G+ can route all the traffic using only half of the total OEO conversions needed by classical grooming. An heuristic is also proposed, aiming at achieving near optimal results in polynomial time
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more
Resumo:
In 2000 the European Statistical Office published the guidelines for developing the Harmonized European Time Use Surveys system. Under such a unified framework, the first Time Use Survey of national scope was conducted in Spain during 2002– 03. The aim of these surveys is to understand human behavior and the lifestyle of people. Time allocation data are of compositional nature in origin, that is, they are subject to non-negativity and constant-sum constraints. Thus, standard multivariate techniques cannot be directly applied to analyze them. The goal of this work is to identify homogeneous Spanish Autonomous Communities with regard to the typical activity pattern of their respective populations. To this end, fuzzy clustering approach is followed. Rather than the hard partitioning of classical clustering, where objects are allocated to only a single group, fuzzy method identify overlapping groups of objects by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey microdata. As a result, a map distinguishing Autonomous Communities with similar activity pattern is drawn. Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm