3 resultados para Passive heating

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence that exposure to passive smoking in general, and in babies in particular, is an important cause of morbimortality. Passive smoking is related to an increased risk of pediatric diseases such as sudden death syndrome, acute respiratory diseases, worsening of asthma, acute-chronic middle ear disease and slowing of lung growth. The objective of this article is to describe the BIBE study protocol. The BIBE study aims to determine the effectiveness of a brief intervention within the context of Primary Care, directed to mothers and fathers that smoke, in order to reduce the exposure of babies to passive smoking (ETS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (ΔH#), and activation entropy (ΔS#) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative ΔH# of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro114 isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the β-hairpin comprising Trp115. A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funne