7 resultados para PLOTS
em Universitat de Girona, Spain
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data. The examples are for map patterns of felsic metavolcanics in two different areas. Q-Q plots of the model for cell values representing proportion of 10 km x 10 km cell area underlain by this rock type are approximately linear, and the line of best fit can be used to estimate the parameters of the model. It is also shown that felsic metavolcanics in the Abitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basic functionality has seen some conceptual improvement, containing now some facilities to work with and represent ilr bases built from balances, and an elaborated subsys- tem for dealing with several kinds of irregular data: (rounded or structural) zeroes, incomplete observations and outliers. The general approach to these irregularities is based on subcompositions: for an irregular datum, one can distinguish a “regular” sub- composition (where all parts are actually observed and the datum behaves typically) and a “problematic” subcomposition (with those unobserved, zero or rounded parts, or else where the datum shows an erratic or atypical behaviour). Systematic classification schemes are proposed for both outliers and missing values (including zeros) focusing on the nature of irregularities in the datum subcomposition(s). To compute statistics with values missing at random and structural zeros, a projection approach is implemented: a given datum contributes to the estimation of the desired parameters only on the subcompositon where it was observed. For data sets with values below the detection limit, two different approaches are provided: the well-known imputation technique, and also the projection approach. To compute statistics in the presence of outliers, robust statistics are adapted to the characteristics of compositional data, based on the minimum covariance determinant approach. The outlier classification is based on four different models of outlier occur- rence and Monte-Carlo-based tests for their characterization. Furthermore the package provides special plots helping to understand the nature of outliers in the dataset. Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator, robustness, rounded zeros
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades <-1 to >9) were separated, and each fraction was analysed for its chemical composition. The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø <8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar). To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend. Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (ΔH#), and activation entropy (ΔS#) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative ΔH# of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro114 isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the β-hairpin comprising Trp115. A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funne