4 resultados para Outdoor recreation.
em Universitat de Girona, Spain
Resumo:
La idea de realitzar aquest projecte sorgeix d’una necessitat en el mercat de productes relacionats amb els nens i nenes petits, dins d’un rang d’edats entre 2 a 5 anys, per poder realitzar activitats de lleure a la muntanya. En ser un producte no existent s’ha hagut de fer el disseny conceptual de tot el producte buscant la solució final adient per a cada part considerada bàsica. Per assegurar-ne la fiabilitat i la seguretat del nen i del pare s’han fet els càlculs pertinents de les seccions més carregades i s’han descrit els processos de fabricació i muntatge de cada peça. La Motxilla – Carretó servirà per circular per pistes de muntanya i forestals. Tindrà dos usos, el primer per quan el nen estigui cansat de caminar i el terreny es poc accidentat,“funció carretó” i el segon ús, per quan el nen està cansat i el terreny és més accidentat, “funció cadireta”. El producte serà transformable en funció d’aquests dos usos principals
Resumo:
És força evident que els parcs naturals nacionals i nacionals són espais dotats d’un gran atractiu paisatgístic, que a més a més, apareixen en guies i catàlegs nacionals i internacionals, essent, en conseqüència, un clar recurs turístic. Aquest article tracta el cas concret dels parcs naturals de Girona
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported