2 resultados para Orthogonal projections

em Universitat de Girona, Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts is divided into two new groups, and a balancing axis in the simplex between both groups is defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in a dendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process; (c) the decomposition of the total variance into balance components associated with each binary partition; (d) a box-plot of each balance. This representation is useful to help the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independently of the number of parts of the sample