1 resultado para Organizing crime
em Universitat de Girona, Spain
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (5)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Campus - Alm@DL - Università di Bologna (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- Biblioteca Digital da Câmara dos Deputados (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bibloteca do Senado Federal do Brasil (293)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (11)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (6)
- Carolina Law Scholarship Repository (2)
- CentAUR: Central Archive University of Reading - UK (21)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- Digital Commons @ Winthrop University (1)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (23)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (107)
- Queensland University of Technology - ePrints Archive (214)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (7)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (9)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (14)
- University of Southampton, United Kingdom (4)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data