2 resultados para Optimal Monetary Policy
em Universitat de Girona, Spain
Resumo:
This dissertation studies the effects of Information and Communication Technologies (ICT) on the banking sector and the payments system. It provides insight into how technology-induced changes occur, by exploring both the nature and scope of main technology innovations and evidencing their economic implications for banks and payment systems. Some parts in the dissertation are descriptive. They summarise the main technological developments in the field of finance and link them to economic policies. These parts are complemented with sections of the study that focus on assessing the extent of technology application to banking and payment activities. Finally, it includes also some work which borrows from the economic literature on banking. The need for an interdisciplinary approach arises from the complexity of the topic and the rapid path of change to which it is subject. The first chapter provides an overview of the influence of developments in ICT on the evolution of financial services and international capital flows. We include main indicators and discuss innovation in the financial sector, exchange rates and international capital flows. The chapter concludes with impact analysis and policy options regarding the international financial architecture, some monetary policy issues and the role of international institutions. The second chapter is a technology assessment study that focuses on the relationship between technology and money. The application of technology to payments systems is transforming the way we use money and, in some instances, is blurring the definition of what constitutes money. This chapter surveys the developments in electronic forms of payment and their relationship to the banking system. It also analyses the challenges posed by electronic money for regulators and policy makers, and in particular the opportunities created by two simultaneous processes: the Economic and Monetary Union and the increasing use of electronic payment instruments. The third chapter deals with the implications of developments in ICT on relationship banking. The financial intermediation literature explains relationship banking as a type of financial intermediation characterised by proprietary information and multiple interactions with customers. This form of banking is important for the financing of small and medium-sized enterprises. We discuss the effects of ICT on the banking sector as a whole and then apply these developments to the case of relationship banking. The fourth chapter is an empirical study of the effects of technology on the banking business, using a sample of data from the Spanish banking industry. The design of the study is based on some of the events described in the previous chapters, and also draws from the economic literature on banking. The study shows that developments in information management have differential effects on wholesale and retail banking activities. Finally, the last chapter is a technology assessment study on electronic payments systems in Spain and the European Union. It contains an analysis of existing payment systems and ongoing or planned initiatives in Spain. It forms part of a broader project comprising a series of country-specific analyses covering ten European countries. The main issues raised across the countries serve as the starting point to discuss implications of the development of electronic money for regulation and policies, and in particular, for monetary-policy making.
Resumo:
Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.