4 resultados para Ontologies (Information retrieval)
em Universitat de Girona, Spain
Resumo:
Tanto los Sistemas de Información Geográfica como la Recuperación de Información han sido campos de investigación muy importantes en las últimas décadas. Recientemente, un nuevo campo de investigación llamado Recuperación de Información Geográfica ha surgido fruto de la confluencia de estos dos campos. El objetivo principal de este campo es definir estructuras de indexación y técnicas para almacenar y recuperar documentos de manera eficiente empleando tanto las referencias textuales como las referencias geográficas contenidas en el texto. En este artículo presentamos la arquitectura de un sistema para recuperación de información geográfica y definimos el flujo de trabajo para la extracción de las referencias geográficas de los documentos. Presentamos además una nueva estructura de indexación que combina un índice invertido, un índice espacial y una ontología. Esta estructura mejora las capacidades de consulta de otras propuestas
Estrategias de búsqueda y utilización de la información en trabajos académicos en educación superior
Resumo:
Los nuevos Planes de Estudio adaptados al Espacio Europeo de la Educación Superior ya están implantándose en nuestras universidades y esto ha supuesto plantearnos qué cambios debemos incorporar como docentes, para que nuestros estudiantes consigan las competencias, habilidades y destrezas necesarias para ser profesionales competentes en un futuro cercano
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
El treball desenvolupat en aquesta tesi presenta un profund estudi i proveïx solucions innovadores en el camp dels sistemes recomanadors. Els mètodes que usen aquests sistemes per a realitzar les recomanacions, mètodes com el Filtrat Basat en Continguts (FBC), el Filtrat Col·laboratiu (FC) i el Filtrat Basat en Coneixement (FBC), requereixen informació dels usuaris per a predir les preferències per certs productes. Aquesta informació pot ser demogràfica (Gènere, edat, adreça, etc), o avaluacions donades sobre algun producte que van comprar en el passat o informació sobre els seus interessos. Existeixen dues formes d'obtenir aquesta informació: els usuaris ofereixen explícitament aquesta informació o el sistema pot adquirir la informació implícita disponible en les transaccions o historial de recerca dels usuaris. Per exemple, el sistema recomanador de pel·lícules MovieLens (http://movielens.umn.edu/login) demana als usuaris que avaluïn almenys 15 pel·lícules dintre d'una escala de * a * * * * * (horrible, ...., ha de ser vista). El sistema genera recomanacions sobre la base d'aquestes avaluacions. Quan els usuaris no estan registrat en el sistema i aquest no té informació d'ells, alguns sistemes realitzen les recomanacions tenint en compte l'historial de navegació. Amazon.com (http://www.amazon.com) realitza les recomanacions tenint en compte les recerques que un usuari a fet o recomana el producte més venut. No obstant això, aquests sistemes pateixen de certa falta d'informació. Aquest problema és generalment resolt amb l'adquisició d'informació addicional, se li pregunta als usuaris sobre els seus interessos o es cerca aquesta informació en fonts addicionals. La solució proposada en aquesta tesi és buscar aquesta informació en diverses fonts, específicament aquelles que contenen informació implícita sobre les preferències dels usuaris. Aquestes fonts poden ser estructurades com les bases de dades amb informació de compres o poden ser no estructurades com les pàgines web on els usuaris deixen la seva opinió sobre algun producte que van comprar o posseïxen. Nosaltres trobem tres problemes fonamentals per a aconseguir aquest objectiu: 1 . La identificació de fonts amb informació idònia per als sistemes recomanadors. 2 . La definició de criteris que permetin la comparança i selecció de les fonts més idònies. 3 . La recuperació d'informació de fonts no estructurades. En aquest sentit, en la tesi proposada s'ha desenvolupat: 1 . Una metodologia que permet la identificació i selecció de les fonts més idònies. Criteris basats en les característiques de les fonts i una mesura de confiança han estat utilitzats per a resoldre el problema de la identificació i selecció de les fonts. 2 . Un mecanisme per a recuperar la informació no estructurada dels usuaris disponible en la web. Tècniques de Text Mining i ontologies s'han utilitzat per a extreure informació i estructurar-la apropiadament perquè la utilitzin els recomanadors. Les contribucions del treball desenvolupat en aquesta tesi doctoral són: 1. Definició d'un conjunt de característiques per a classificar fonts rellevants per als sistemes recomanadors 2. Desenvolupament d'una mesura de rellevància de les fonts calculada sobre la base de les característiques definides 3. Aplicació d'una mesura de confiança per a obtenir les fonts més fiables. La confiança es definida des de la perspectiva de millora de la recomanació, una font fiable és aquella que permet millorar les recomanacions. 4. Desenvolupament d'un algorisme per a seleccionar, des d'un conjunt de fonts possibles, les més rellevants i fiable utilitzant les mitjanes esmentades en els punts previs. 5. Definició d'una ontologia per a estructurar la informació sobre les preferències dels usuaris que estan disponibles en Internet. 6. Creació d'un procés de mapatge que extreu automàticament informació de les preferències dels usuaris disponibles en la web i posa aquesta informació dintre de l'ontologia. Aquestes contribucions permeten aconseguir dos objectius importants: 1 . Millorament de les recomanacions usant fonts d'informació alternatives que sigui rellevants i fiables. 2 . Obtenir informació implícita dels usuaris disponible en Internet.