3 resultados para Nwspapers -- Sections, columns, etc.
em Universitat de Girona, Spain
Resumo:
A problem in the archaeometric classification of Catalan Renaissance pottery is the fact, that the clay supply of the pottery workshops was centrally organized by guilds, and therefore usually all potters of a single production centre produced chemically similar ceramics. However, analysing the glazes of the ware usually a large number of inclusions in the glaze is found, which reveal technological differences between single workshops. These inclusions have been used by the potters in order to opacify the transparent glaze and to achieve a white background for further decoration. In order to distinguish different technological preparation procedures of the single workshops, at a Scanning Electron Microscope the chemical composition of those inclusions as well as their size in the two-dimensional cut is recorded. Based on the latter, a frequency distribution of the apparent diameters is estimated for each sample and type of inclusion. Following an approach by S.D. Wicksell (1925), it is principally possible to transform the distributions of the apparent 2D-diameters back to those of the true three-dimensional bodies. The applicability of this approach and its practical problems are examined using different ways of kernel density estimation and Monte-Carlo tests of the methodology. Finally, it is tested in how far the obtained frequency distributions can be used to classify the pottery
Resumo:
By using suitable parameters, we present a uni¯ed aproach for describing four methods for representing categorical data in a contingency table. These methods include: correspondence analysis (CA), the alternative approach using Hellinger distance (HD), the log-ratio (LR) alternative, which is appropriate for compositional data, and the so-called non-symmetrical correspondence analysis (NSCA). We then make an appropriate comparison among these four methods and some illustrative examples are given. Some approaches based on cumulative frequencies are also linked and studied using matrices. Key words: Correspondence analysis, Hellinger distance, Non-symmetrical correspondence analysis, log-ratio analysis, Taguchi inertia
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants