3 resultados para Numerical analysis.
em Universitat de Girona, Spain
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model