6 resultados para Neolític

em Universitat de Girona, Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joaquim Fort és professor de Física a la UdG i ha desenvolupat unes equacions que expliquen com avançava l’agricultura al neolític. L’arqueologia ens diu que aquesta penetració va ser molt lenta a partir de les restes recollides, però és amb les matemàtiques que investigadors com Fort poden establir models d’aplicació general

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithic population density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents population dynamics models that can be applied to predict the rate of spread of the Neolithic transition (change from hunter-gathering to farming economics) across the European continent, which took place about 9000 to 5000 years ago. The first models in this thesis provide predictions at a continental scale. We develop population dynamics models with explicit kernels and apply realistic data. We also derive a new time-delayed reaction-diffusion equation which yields speeds about a 10% slower than previous models. We also deal with a regional variability: the slowdown of the Neolithic front when reaching the North of Europe. We develop simple reaction-diffusion models that can predict the measured speeds in terms of the non-homogeneous distribution of pre-Neolithic (Mesolithic) population in Europe, which were present in higher densities at the North of the continent. Such models can explain the observed speeds.