2 resultados para NUCLEARITY SPIN CLUSTERS
em Universitat de Girona, Spain
Resumo:
A study was conducted on the methods of basis set superposition error (BSSE)-free geometry optimization and frequency calculations in clusters larger than a dimer. In particular, three different counterpoise schemes were critically examined. It was shown that the counterpoise-corrected supermolecule energy can be easily obtained in all the cases by using the many-body partitioning of energy
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)