5 resultados para Multitrait-multimethod matrix
em Universitat de Girona, Spain
Resumo:
Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted
Resumo:
Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article we show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. We suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs di ers from the application to standard unconstrained data. We show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which we conclude that the faceto-face collection mode is generally superior to the telephone mode, although primacy e ects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)
Resumo:
El objetivo de esta tesis es predecir el rendimiento de los estudiantes de doctorado en la Universidad de Girona según características personales (background), actitudinales y de redes sociales de los estudiantes. La población estudiada son estudiantes de tercer y cuarto curso de doctorado y sus directores de tesis doctoral. Para obtener los datos se ha diseño un cuestionario web especificando sus ventajas y teniendo en cuenta algunos problemas tradicionales de no cobertura o no respuesta. El cuestionario web se hizo debido a la complejidad que comportan de las preguntas de red social. El cuestionario electrónico permite, mediante una serie de instrucciones, reducir el tiempo para responder y hacerlo menos cargado. Este cuestionario web, además es auto administrado, lo cual nos permite, según la literatura, unas respuestas mas honestas que cuestionario con encuestador. Se analiza la calidad de las preguntas de red social en cuestionario web para datos egocéntricos. Para eso se calcula la fiabilidad y la validez de este tipo de preguntas, por primera vez a través del modelo Multirasgo Multimétodo (Multitrait Multimethod). Al ser datos egocéntricos, se pueden considerar jerárquicos, y por primera vez se una un modelo Multirasgo Multimétodo Multinivel (multilevel Multitrait Multimethod). Las la fiabilidad y validez se pueden obtener a nivel individual (within group component) o a nivel de grupo (between group component) y se usan para llevar a cabo un meta-análisis con otras universidades europeas para analizar ciertas características de diseño del cuestionario. Estas características analizan si para preguntas de red social hechas en cuestionarios web son más fiables y validas hechas "by questions" o "by alters", si son presentes todas las etiquetas de frecuencia para los ítems o solo la del inicio y final, o si es mejor que el diseño del cuestionario esté en con color o blanco y negro. También se analiza la calidad de la red social en conjunto, en este caso específico son los grupos de investigación de la universidad. Se tratan los problemas de los datos ausentes en las redes completas. Se propone una nueva alternativa a la solución típica de la red egocéntrica o los respondientes proxies. Esta nueva alternativa la hemos nombrado "Nosduocentered Network" (red Nosduocentrada), se basa en dos actores centrales en una red. Estimando modelos de regresión, esta "Nosduocentered network" tiene mas poder predictivo para el rendimiento de los estudiantes de doctorado que la red egocéntrica. Además se corrigen las correlaciones de las variables actitudinales por atenuación debido al pequeño tamaño muestral. Finalmente, se hacen regresiones de los tres tipos de variables (background, actitudinales y de red social) y luego se combinan para analizar cual para predice mejor el rendimiento (según publicaciones académicas) de los estudiantes de doctorado. Los resultados nos llevan a predecir el rendimiento académico de los estudiantes de doctorado depende de variables personales (background) i actitudinales. Asimismo, se comparan los resultados obtenidos con otros estudios publicados.
Resumo:
Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article surveys several methods of fundamental matrix estimation which have been classified into linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analysed using real images. A summary, accompanied with experimental results, is given
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation