7 resultados para Multispectral imaging
em Universitat de Girona, Spain
Resumo:
A major obstacle to processing images of the ocean floor comes from the absorption and scattering effects of the light in the aquatic environment. Due to the absorption of the natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion, and, as the vehicle moves, induce shadows in the scene. For this reason, the first step towards application of standard computer vision techniques to underwater imaging requires dealing first with these lighting problems. This paper analyses and compares existing methodologies to deal with low-contrast, nonuniform illumination in underwater image sequences. The reviewed techniques include: (i) study of the illumination-reflectance model, (ii) local histogram equalization, (iii) homomorphic filtering, and, (iv) subtraction of the illumination field. Several experiments on real data have been conducted to compare the different approaches
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
In this paper we describe a system for underwater navigation with AUVs in partially structured environments, such as dams, ports or marine platforms. An imaging sonar is used to obtain information about the location of planar structures present in such environments. This information is incorporated into a feature-based SLAM algorithm in a two step process: (I) the full 360deg sonar scan is undistorted (to compensate for vehicle motion), thresholded and segmented to determine which measurements correspond to planar environment features and which should be ignored; and (2) SLAM proceeds once the data association is obtained: both the vehicle motion and the measurements whose correct association has been previously determined are incorporated in the SLAM algorithm. This two step delayed SLAM process allows to robustly determine the feature and vehicle locations in the presence of large amounts of spurious or unrelated measurements that might correspond to boats, rocks, etc. Preliminary experiments show the viability of the proposed approach
Resumo:
Aquesta tesi tracta sobre el problema de la navegació per a vehicles submarins autònoms que operen en entorns artificials estructurats com ara ports, canals, plataformes marines i altres escenaris similars. A partir d'una estimació precisa de la posició en aquests entorns, les capacitats dels vehicles submarins s'incrementen notablement i s'obre una porta al seu funcionament autònom. El manteniment, inspecció i vigilància d'instal lacions marines són alguns exemples de possibles aplicacions. Les principals contribucions d'aquesta tesi consisteixen per una banda en el desenvolupament de diferents sistemes de localització per a aquelles situacions on es disposa d'un mapa previ de l'entorn i per l'altra en el desenvolupament d'una nova solució al problema de la Localització i Construcció Simultània de Mapes (SLAM en les seves sigles en anglès), la finalitat del qual és fer que un vehicle autònom creï un mapa de l'entorn desconegut que el rodeja i, al mateix temps, utilitzi aquest mapa per a determinar la seva pròpia posició. S'ha escollit un sonar d'imatges d'escaneig mecànic com a sensor principal per a aquest treball tant pel seu relatiu baix cost com per la seva capacitat per produir una representació detallada de l'entorn. Per altra banda, les particularitats de la seva operació i, especialment, la baixa freqúència a la que es produeixen les mesures, constitueixen els principals inconvenients que s'han hagut d'abordar en les estratègies de localització proposades. Les solucions adoptades per aquests problemes constitueixen una altra contribució d'aquesta tesi. El desenvolupament de vehicles autònoms i el seu ús com a plataformes experimentals és un altre aspecte important d'aquest treball. Experiments portats a terme tant en el laboratori com en escenaris reals d'aplicació han proporcionat les dades necessàries per a provar i avaluar els diferents sistemes de localització proposats.
Resumo:
La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.