8 resultados para Multi-robot teams
em Universitat de Girona, Spain
Resumo:
This thesis addresses the problem of learning in physical heterogeneous multi-agent systems (MAS) and the analysis of the benefits of using heterogeneous MAS with respect to homogeneous ones. An algorithm is developed for this task; building on a previous work on stability in distributed systems by Tad Hogg and Bernardo Huberman, and combining two phenomena observed in natural systems, task partition and hierarchical dominance. This algorithm is devised for allowing agents to learn which are the best tasks to perform on the basis of each agent's skills and the contribution to the team global performance. Agents learn by interacting with the environment and other teammates, and get rewards from the result of the actions they perform. This algorithm is specially designed for problems where all robots have to co-operate and work simultaneously towards the same goal. One example of such a problem is role distribution in a team of heterogeneous robots that form a soccer team, where all members take decisions and co-operate simultaneously. Soccer offers the possibility of conducting research in MAS, where co-operation plays a very important role in a dynamical and changing environment. For these reasons and the experience of the University of Girona in this domain, soccer has been selected as the test-bed for this research. In the case of soccer, tasks are grouped by means of roles. One of the most interesting features of this algorithm is that it endows MAS with a high adaptability to changes in the environment. It allows the team to perform their tasks, while adapting to the environment. This is studied in several cases, for changes in the environment and in the robot's body. Other features are also analysed, especially a parameter that defines the fitness (biological concept) of each agent in the system, which contributes to performance and team adaptability. The algorithm is applied later to allow agents to learn in teams of homogeneous and heterogeneous robots which roles they have to select, in order to maximise team performance. The teams are compared and the performance is evaluated in the games against three hand-coded teams and against the different homogeneous and heterogeneous teams built in this thesis. This section focuses on the analysis of performance and task partition, in order to study the benefits of heterogeneity in physical MAS. In order to study heterogeneity from a rigorous point of view, a diversity measure is developed building on the hierarchic social entropy defined by Tucker Balch. This is adapted to quantify physical diversity in robot teams. This tool presents very interesting features, as it can be used in the future to design heterogeneous teams on the basis of the knowledge on other teams.
Resumo:
L'experiència de l'autor en la temàtica d'agents intel·ligents i la seva aplicació als robots que emulen el joc de futbol han donat el bagatge suficient per poder encetar i proposar la temàtica plantejada en aquesta tesi: com fer que un complicat robot pugui treure el màxim suc de l'autoconeixement de l'estructura de control inclosa al seu propi cos físic, i així poder cooperar millor amb d'altres agents per optimitzar el rendiment a l'hora de resoldre problemes de cooperació. Per resoldre aquesta qüestió es proposa incorporar la dinàmica del cos físic en les decisions cooperatives dels agents físics unificant els móns de l'automàtica, la robòtica i la intel·ligència artificial a través de la noció de capacitat: la capacitat vista com a entitat on els enginyers de control dipositen el seu coneixement, i a la vegada la capacitat vista com la utilitat on un agent hi diposita el seu autoconeixement del seu cos físic que ha obtingut per introspecció. En aquesta tesi es presenta l'arquitectura DPAA que s'organitza seguint una jerarquia vertical en tres nivells d'abstracció o mòduls control, supervisor i agent, els quals presenten una estructura interna homogènia que facilita les tasques de disseny de l'agent. Aquests mòduls disposen d'un conjunt específic de capacitats que els permeten avaluar com seran les accions que s'executaran en un futur. En concret, al mòdul de control (baix nivell d'abstracció) les capacitats consisteixen en paràmetres que descriuen el comportament dinàmic i estàtic que resulta d'executar un controlador determinat, és a dir, encapsulen el coneixement de l'enginyer de control. Així, a través dels mecanismes de comunicació entre mòduls aquest coneixement pot anar introduint-se als mecanismes de decisió dels mòduls superiors (supervisor i agent) de forma que quan els paràmetres dinàmics i estàtics indiquin que pot haver-hi problemes a baix nivell, els mòduls superiors es poden responsabilitzar d'inhibir o no l'execució d'algunes accions. Aquest procés top-down intern d'avaluació de la viabilitat d'executar una acció determinada s'anomena procés d'introspecció. Es presenten diversos exemples per tal d'il·lustrar com es pot dissenyar un agent físic amb dinàmica pròpia utilitzant l'arquitectura DPAA com a referent. En concret, es mostra tot el procés a seguir per dissenyar un sistema real format per dos robots en formació de comboi, i es mostra com es pot resoldre el problema de la col·lisió utilitzant les capacitats a partir de les especificacions de disseny de l'arquitectura DPAA. Al cinquè capítol s'hi exposa el procés d'anàlisi i disseny en un domini més complex: un grup de robots que emulen el joc del futbol. Els resultats que s'hi mostren fan referència a l'avaluació de la validesa de l'arquitectura per resoldre el problema de la passada de la pilota. S'hi mostren diversos resultats on es veu que és possible avaluar si una passada de pilota és viable o no. Encara que aquesta possibilitat ja ha estat demostrada en altres treballs, l'aportació d'aquesta tesi està en el fet que és possible avaluar la viabilitat a partir de l'encapsulament de la dinàmica en unes capacitats específiques, és a dir, és possible saber quines seran les característiques de la passada: el temps del xut, la precisió o inclòs la geometria del moviment del robot xutador. Els resultats mostren que la negociació de les condicions de la passada de la pilota és possible a partir de capacitats atòmiques, les quals inclouen informació sobre les característiques de la dinàmica dels controladors. La complexitat del domini proposat fa difícil comparar els resultats amb els altres treballs. Cal tenir present que els resultats mostrats s'han obtingut utilitzant un simulador fet a mida que incorpora les dinàmiques dels motors dels robots i de la pilota. En aquest sentit cal comentar que no existeixen treballs publicats sobre el problema de la passada en què es tingui en compte la dinàmica dels robots. El present treball permet assegurar que la inclusió de paràmetres dinàmics en el conjunt de les capacitats de l'agent físic permet obtenir un millor comportament col·lectiu dels robots, i que aquesta millora es deu al fet que en les etapes de decisió els agents utilitzen informació relativa a la viabilitat sobre les seves accions: aquesta viabilitat es pot calcular a partir del comportament dinàmic dels controladors. De fet, la definició de capacitats a partir de paràmetres dinàmics permet treballar fàcilment amb sistemes autònoms heterogenis: l'agent físic pot ser conscient de les seves capacitats d'actuació a través de mecanismes interns d'introspecció, i això permet que pugui prendre compromisos amb altres agents físics.
Resumo:
Aquest treball proposa una nova arquitectura de control amb coordinació distribuïda per a un robot mòbil (ARMADiCo). La metodologia de coordinació distribuïda consisteix en dos passos: el primer determina quin és l'agent que guanya el recurs basat en el càlcul privat de la utilitat i el segon, com es fa el canvi del recurs per evitar comportaments abruptes del robot. Aquesta arquitectura ha estat concebuda per facilitar la introducció de nous components hardware i software, definint un patró de disseny d'agents que captura les característiques comunes dels agents. Aquest patró ha portat al desenvolupament d'una arquitectura modular dins l'agent que permet la separació dels diferents mètodes utilitzats per aconseguir els objectius, la col·laboració, la competició i la coordinació de recursos. ARMADiCo s'ha provat en un robot Pioneer 2DX de MobileRobots Inc.. S'han fet diversos experiments i els resultats han demostrat que s'han aconseguit les característiques proposades per l'arquitectura.
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Aquest projecte titulat: “Disseny de controladors òptims per al robot Pioneer”, té com a funció incloure en la recerca, que ja està iniciada, del control del Robot Pioneer 2DX, una nova versió d’agents go to per al funcionament del robot. La problemàtica que ens trobem és sobretot per al primer controlador. Fins ara el sistema multi-agent fet, feia servir un agent go to que generava la trajectòria a seguir i la controlava mitjançant un PID. Introduint un mètode geomètric com és el cas del pure pursuit la cosa es complica ja que és més complex l’ajustament del funcionament d’aquest. Centrant-nos en canvi el cas del segon controlador el problema es simplifica ja que l’ajustatge d’aquest mateix es pot realitzar de manera empírica i la problemàtica per a la situació en concret es millora amb major facilitat. És per aquest motiu, sobretot pel primer controlador, que s’han hagut de realitzar algunes modificacions en el plantejament del projecte al llarg d’aquest. En un principi estava pensat crear aquest controlador a través de Matlab® mitjançant l’eina Simulink® però per problemes de software en un moment donat hem hagut de redirigir el projecte cap al llenguatge base de l’estructura multi-agent com és el C++. Per aquest motiu també s’ha hagut de prescindir de la implementació d’aquests també en l’estructura LabView®.
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.