5 resultados para Multi-robot

em Universitat de Girona, Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'experiència de l'autor en la temàtica d'agents intel·ligents i la seva aplicació als robots que emulen el joc de futbol han donat el bagatge suficient per poder encetar i proposar la temàtica plantejada en aquesta tesi: com fer que un complicat robot pugui treure el màxim suc de l'autoconeixement de l'estructura de control inclosa al seu propi cos físic, i així poder cooperar millor amb d'altres agents per optimitzar el rendiment a l'hora de resoldre problemes de cooperació. Per resoldre aquesta qüestió es proposa incorporar la dinàmica del cos físic en les decisions cooperatives dels agents físics unificant els móns de l'automàtica, la robòtica i la intel·ligència artificial a través de la noció de capacitat: la capacitat vista com a entitat on els enginyers de control dipositen el seu coneixement, i a la vegada la capacitat vista com la utilitat on un agent hi diposita el seu autoconeixement del seu cos físic que ha obtingut per introspecció. En aquesta tesi es presenta l'arquitectura DPAA que s'organitza seguint una jerarquia vertical en tres nivells d'abstracció o mòduls control, supervisor i agent, els quals presenten una estructura interna homogènia que facilita les tasques de disseny de l'agent. Aquests mòduls disposen d'un conjunt específic de capacitats que els permeten avaluar com seran les accions que s'executaran en un futur. En concret, al mòdul de control (baix nivell d'abstracció) les capacitats consisteixen en paràmetres que descriuen el comportament dinàmic i estàtic que resulta d'executar un controlador determinat, és a dir, encapsulen el coneixement de l'enginyer de control. Així, a través dels mecanismes de comunicació entre mòduls aquest coneixement pot anar introduint-se als mecanismes de decisió dels mòduls superiors (supervisor i agent) de forma que quan els paràmetres dinàmics i estàtics indiquin que pot haver-hi problemes a baix nivell, els mòduls superiors es poden responsabilitzar d'inhibir o no l'execució d'algunes accions. Aquest procés top-down intern d'avaluació de la viabilitat d'executar una acció determinada s'anomena procés d'introspecció. Es presenten diversos exemples per tal d'il·lustrar com es pot dissenyar un agent físic amb dinàmica pròpia utilitzant l'arquitectura DPAA com a referent. En concret, es mostra tot el procés a seguir per dissenyar un sistema real format per dos robots en formació de comboi, i es mostra com es pot resoldre el problema de la col·lisió utilitzant les capacitats a partir de les especificacions de disseny de l'arquitectura DPAA. Al cinquè capítol s'hi exposa el procés d'anàlisi i disseny en un domini més complex: un grup de robots que emulen el joc del futbol. Els resultats que s'hi mostren fan referència a l'avaluació de la validesa de l'arquitectura per resoldre el problema de la passada de la pilota. S'hi mostren diversos resultats on es veu que és possible avaluar si una passada de pilota és viable o no. Encara que aquesta possibilitat ja ha estat demostrada en altres treballs, l'aportació d'aquesta tesi està en el fet que és possible avaluar la viabilitat a partir de l'encapsulament de la dinàmica en unes capacitats específiques, és a dir, és possible saber quines seran les característiques de la passada: el temps del xut, la precisió o inclòs la geometria del moviment del robot xutador. Els resultats mostren que la negociació de les condicions de la passada de la pilota és possible a partir de capacitats atòmiques, les quals inclouen informació sobre les característiques de la dinàmica dels controladors. La complexitat del domini proposat fa difícil comparar els resultats amb els altres treballs. Cal tenir present que els resultats mostrats s'han obtingut utilitzant un simulador fet a mida que incorpora les dinàmiques dels motors dels robots i de la pilota. En aquest sentit cal comentar que no existeixen treballs publicats sobre el problema de la passada en què es tingui en compte la dinàmica dels robots. El present treball permet assegurar que la inclusió de paràmetres dinàmics en el conjunt de les capacitats de l'agent físic permet obtenir un millor comportament col·lectiu dels robots, i que aquesta millora es deu al fet que en les etapes de decisió els agents utilitzen informació relativa a la viabilitat sobre les seves accions: aquesta viabilitat es pot calcular a partir del comportament dinàmic dels controladors. De fet, la definició de capacitats a partir de paràmetres dinàmics permet treballar fàcilment amb sistemes autònoms heterogenis: l'agent físic pot ser conscient de les seves capacitats d'actuació a través de mecanismes interns d'introspecció, i això permet que pugui prendre compromisos amb altres agents físics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aquest treball proposa una nova arquitectura de control amb coordinació distribuïda per a un robot mòbil (ARMADiCo). La metodologia de coordinació distribuïda consisteix en dos passos: el primer determina quin és l'agent que guanya el recurs basat en el càlcul privat de la utilitat i el segon, com es fa el canvi del recurs per evitar comportaments abruptes del robot. Aquesta arquitectura ha estat concebuda per facilitar la introducció de nous components hardware i software, definint un patró de disseny d'agents que captura les característiques comunes dels agents. Aquest patró ha portat al desenvolupament d'una arquitectura modular dins l'agent que permet la separació dels diferents mètodes utilitzats per aconseguir els objectius, la col·laboració, la competició i la coordinació de recursos. ARMADiCo s'ha provat en un robot Pioneer 2DX de MobileRobots Inc.. S'han fet diversos experiments i els resultats han demostrat que s'han aconseguit les característiques proposades per l'arquitectura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest projecte titulat: “Disseny de controladors òptims per al robot Pioneer”, té com a funció incloure en la recerca, que ja està iniciada, del control del Robot Pioneer 2DX, una nova versió d’agents go to per al funcionament del robot. La problemàtica que ens trobem és sobretot per al primer controlador. Fins ara el sistema multi-agent fet, feia servir un agent go to que generava la trajectòria a seguir i la controlava mitjançant un PID. Introduint un mètode geomètric com és el cas del pure pursuit la cosa es complica ja que és més complex l’ajustament del funcionament d’aquest. Centrant-nos en canvi el cas del segon controlador el problema es simplifica ja que l’ajustatge d’aquest mateix es pot realitzar de manera empírica i la problemàtica per a la situació en concret es millora amb major facilitat. És per aquest motiu, sobretot pel primer controlador, que s’han hagut de realitzar algunes modificacions en el plantejament del projecte al llarg d’aquest. En un principi estava pensat crear aquest controlador a través de Matlab® mitjançant l’eina Simulink® però per problemes de software en un moment donat hem hagut de redirigir el projecte cap al llenguatge base de l’estructura multi-agent com és el C++. Per aquest motiu també s’ha hagut de prescindir de la implementació d’aquests també en l’estructura LabView®.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.