4 resultados para Multi-objective simulated annealing
em Universitat de Girona, Spain
Resumo:
Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.
Resumo:
In previous work we proposed a multi-objective traffic engineering scheme (MHDB-S model) using different distribution trees to multicast several flows. In this paper, we propose a heuristic algorithm to create multiple point-to-multipoint (p2mp) LSPs based on the optimum sub-flow values obtained with our MHDB-S model. Moreover, a general problem for supporting multicasting in MPLS networks is the lack of labels. To reduce the number of labels used, a label space reduction algorithm solution is also considered
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.