2 resultados para Multi Measurement Mode
em Universitat de Girona, Spain
Resumo:
Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article we show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. We suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs di ers from the application to standard unconstrained data. We show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which we conclude that the faceto-face collection mode is generally superior to the telephone mode, although primacy e ects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)
Resumo:
En les últimes dècades, l'increment dels nivells de radiació solar ultraviolada (UVR) que arriba a la Terra (principalment degut a la disminució d'ozó estratosfèric) juntament amb l'augment detectat en malalties relacionades amb l'exposició a la UVR, ha portat a un gran volum d'investigacions sobre la radiació solar en aquesta banda i els seus efectes en els humans. L'índex ultraviolat (UVI), que ha estat adoptat internacionalment, va ser definit amb el propòsit d'informar al públic general sobre els riscos d'exposar el cos nu a la UVR i per tal d'enviar missatges preventius. L'UVI es va definir inicialment com el valor màxim diari. No obstant, el seu ús actual s'ha ampliat i té sentit referir-se a un valor instantani o a una evolució diària del valor d'UVI mesurat, modelitzat o predit. El valor concret d'UVI està afectat per la geometria Sol-Terra, els núvols, l'ozó, els aerosols, l'altitud i l'albedo superficial. Les mesures d'UVI d'alta qualitat són essencials com a referència i per estudiar tendències a llarg termini; es necessiten també tècniques acurades de modelització per tal d'entendre els factors que afecten la UVR, per predir l'UVI i com a control de qualitat de les mesures. És d'esperar que les mesures més acurades d'UVI s'obtinguin amb espectroradiòmetres. No obstant, com que els costs d'aquests dispositius són elevats, és més habitual trobar dades d'UVI de radiòmetres eritemàtics (de fet, la majoria de les xarxes d'UVI estan equipades amb aquest tipus de sensors). Els millors resultats en modelització s'obtenen amb models de transferència radiativa de dispersió múltiple quan es coneix bé la informació d'entrada. No obstant, habitualment no es coneix informació d'entrada, com per exemple les propietats òptiques dels aerosols, la qual cosa pot portar a importants incerteses en la modelització. Sovint, s'utilitzen models més simples per aplicacions com ara la predicció d'UVI o l'elaboració de mapes d'UVI, ja que aquests són més ràpids i requereixen menys paràmetres d'entrada. Tenint en compte aquest marc de treball, l'objectiu general d'aquest estudi és analitzar l'acord al qual es pot arribar entre la mesura i la modelització d'UVI per condicions de cel sense núvols. D'aquesta manera, en aquest estudi es presenten comparacions model-mesura per diferents tècniques de modelització, diferents opcions d'entrada i per mesures d'UVI tant de radiòmetres eritemàtics com d'espectroradiòmeters. Com a conclusió general, es pot afirmar que la comparació model-mesura és molt útil per detectar limitacions i estimar incerteses tant en les modelitzacions com en les mesures. Pel que fa a la modelització, les principals limitacions que s'han trobat és la falta de coneixement de la informació d'aerosols considerada com a entrada dels models. També, s'han trobat importants diferències entre l'ozó mesurat des de satèl·lit i des de la superfície terrestre, la qual cosa pot portar a diferències importants en l'UVI modelitzat. PTUV, una nova i simple parametrització pel càlcul ràpid d'UVI per condicions de cel serens, ha estat desenvolupada en base a càlculs de transferència radiativa. La parametrització mostra una bona execució tant respecte el model base com en comparació amb diverses mesures d'UVI. PTUV ha demostrat la seva utilitat per aplicacions particulars com ara l'estudi de l'evolució anual de l'UVI per un cert lloc (Girona) i la composició de mapes d'alta resolució de valors d'UVI típics per un territori concret (Catalunya). En relació a les mesures, es constata que és molt important saber la resposta espectral dels radiòmetres eritemàtics per tal d'evitar grans incerteses a la mesura d'UVI. Aquest instruments, si estan ben caracteritzats, mostren una bona comparació amb els espectroradiòmetres d'alta qualitat en la mesura d'UVI. Les qüestions més importants respecte les mesures són la calibració i estabilitat a llarg termini. També, s'ha observat un efecte de temperatura en el PTFE, un material utilitzat en els difusors en alguns instruments, cosa que potencialment podria tenir implicacions importants en el camp experimental. Finalment, i pel que fa a les comparacions model-mesura, el millor acord s'ha trobat quan es consideren mesures d'UVI d'espectroradiòmetres d'alta qualitat i s'usen models de transferència radiativa que consideren les millors dades disponibles pel que fa als paràmetres òptics d'ozó i aerosols i els seus canvis en el temps. D'aquesta manera, l'acord pot ser tan alt dins un 0.1º% en UVI, i típicament entre menys d'un 3%. Aquest acord es veu altament deteriorat si s'ignora la informació d'aerosols i depèn de manera important del valor d'albedo de dispersió simple dels aerosols. Altres dades d'entrada del model, com ara l'albedo superficial i els perfils d'ozó i temperatura introdueixen una incertesa menor en els resultats de modelització.