6 resultados para Modal Correlation
em Universitat de Girona, Spain
Resumo:
In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented
Resumo:
The contributions of the correlated and uncorrelated components of the electron-pair density to atomic and molecular intracule I(r) and extracule E(R) densities and its Laplacian functions ∇2I(r) and ∇2E(R) are analyzed at the Hartree-Fock (HF) and configuration interaction (CI) levels of theory. The topologies of the uncorrelated components of these functions can be rationalized in terms of the corresponding one-electron densities. In contrast, by analyzing the correlated components of I(r) and E(R), namely, IC(r) and EC(R), the effect of electron Fermi and Coulomb correlation can be assessed at the HF and CI levels of theory. Moreover, the contribution of Coulomb correlation can be isolated by means of difference maps between IC(r) and EC(R) distributions calculated at the two levels of theory. As application examples, the He, Ne, and Ar atomic series, the C2-2, N2, O2+2 molecular series, and the C2H4 molecule have been investigated. For these atoms and molecules, it is found that Fermi correlation accounts for the main characteristics of IC(r) and EC(R), with Coulomb correlation increasing slightly the locality of these functions at the CI level of theory. Furthermore, IC(r), EC(R), and the associated Laplacian functions, reveal the short-ranged nature and high isotropy of Fermi and Coulomb correlation in atoms and molecules
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
Els models matemàtics quantitatius són simplificacions de la realitat i per tant el comportament obtingut per simulació d'aquests models difereix dels reals. L'ús de models quantitatius complexes no és una solució perquè en la majoria dels casos hi ha alguna incertesa en el sistema real que no pot ser representada amb aquests models. Una forma de representar aquesta incertesa és mitjançant models qualitatius o semiqualitatius. Un model d'aquest tipus de fet representa un conjunt de models. La simulació del comportament de models quantitatius genera una trajectòria en el temps per a cada variable de sortida. Aquest no pot ser el resultat de la simulació d'un conjunt de models. Una forma de representar el comportament en aquest cas és mitjançant envolupants. L'envolupant exacta és complete, és a dir, inclou tots els possibles comportaments del model, i correcta, és a dir, tots els punts dins de l'envolupant pertanyen a la sortida de, com a mínim, una instància del model. La generació d'una envolupant així normalment és una tasca molt dura que es pot abordar, per exemple, mitjançant algorismes d'optimització global o comprovació de consistència. Per aquesta raó, en molts casos s'obtenen aproximacions a l'envolupant exacta. Una aproximació completa però no correcta a l'envolupant exacta és una envolupant sobredimensionada, mentre que una envolupant correcta però no completa és subdimensionada. Aquestes propietats s'han estudiat per diferents simuladors per a sistemes incerts.
Resumo:
Les restriccions reals quantificades (QRC) formen un formalisme matemàtic utilitzat per modelar un gran nombre de problemes físics dins els quals intervenen sistemes d'equacions no-lineals sobre variables reals, algunes de les quals podent ésser quantificades. Els QRCs apareixen en nombrosos contextos, com l'Enginyeria de Control o la Biologia. La resolució de QRCs és un domini de recerca molt actiu dins el qual es proposen dos enfocaments diferents: l'eliminació simbòlica de quantificadors i els mètodes aproximatius. Tot i això, la resolució de problemes de grans dimensions i del cas general, resten encara problemes oberts. Aquesta tesi proposa una nova metodologia aproximativa basada en l'Anàlisi Intervalar Modal, una teoria matemàtica que permet resoldre problemes en els quals intervenen quantificadors lògics sobre variables reals. Finalment, dues aplicacions a l'Enginyeria de Control són presentades. La primera fa referència al problema de detecció de fallades i la segona consisteix en un controlador per a un vaixell a vela.