8 resultados para Measurement errors
em Universitat de Girona, Spain
Resumo:
Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices
Resumo:
In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression
Resumo:
Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted
Resumo:
Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression
Resumo:
Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article we show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. We suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs di ers from the application to standard unconstrained data. We show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which we conclude that the faceto-face collection mode is generally superior to the telephone mode, although primacy e ects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)
Resumo:
En les últimes dècades, l'increment dels nivells de radiació solar ultraviolada (UVR) que arriba a la Terra (principalment degut a la disminució d'ozó estratosfèric) juntament amb l'augment detectat en malalties relacionades amb l'exposició a la UVR, ha portat a un gran volum d'investigacions sobre la radiació solar en aquesta banda i els seus efectes en els humans. L'índex ultraviolat (UVI), que ha estat adoptat internacionalment, va ser definit amb el propòsit d'informar al públic general sobre els riscos d'exposar el cos nu a la UVR i per tal d'enviar missatges preventius. L'UVI es va definir inicialment com el valor màxim diari. No obstant, el seu ús actual s'ha ampliat i té sentit referir-se a un valor instantani o a una evolució diària del valor d'UVI mesurat, modelitzat o predit. El valor concret d'UVI està afectat per la geometria Sol-Terra, els núvols, l'ozó, els aerosols, l'altitud i l'albedo superficial. Les mesures d'UVI d'alta qualitat són essencials com a referència i per estudiar tendències a llarg termini; es necessiten també tècniques acurades de modelització per tal d'entendre els factors que afecten la UVR, per predir l'UVI i com a control de qualitat de les mesures. És d'esperar que les mesures més acurades d'UVI s'obtinguin amb espectroradiòmetres. No obstant, com que els costs d'aquests dispositius són elevats, és més habitual trobar dades d'UVI de radiòmetres eritemàtics (de fet, la majoria de les xarxes d'UVI estan equipades amb aquest tipus de sensors). Els millors resultats en modelització s'obtenen amb models de transferència radiativa de dispersió múltiple quan es coneix bé la informació d'entrada. No obstant, habitualment no es coneix informació d'entrada, com per exemple les propietats òptiques dels aerosols, la qual cosa pot portar a importants incerteses en la modelització. Sovint, s'utilitzen models més simples per aplicacions com ara la predicció d'UVI o l'elaboració de mapes d'UVI, ja que aquests són més ràpids i requereixen menys paràmetres d'entrada. Tenint en compte aquest marc de treball, l'objectiu general d'aquest estudi és analitzar l'acord al qual es pot arribar entre la mesura i la modelització d'UVI per condicions de cel sense núvols. D'aquesta manera, en aquest estudi es presenten comparacions model-mesura per diferents tècniques de modelització, diferents opcions d'entrada i per mesures d'UVI tant de radiòmetres eritemàtics com d'espectroradiòmeters. Com a conclusió general, es pot afirmar que la comparació model-mesura és molt útil per detectar limitacions i estimar incerteses tant en les modelitzacions com en les mesures. Pel que fa a la modelització, les principals limitacions que s'han trobat és la falta de coneixement de la informació d'aerosols considerada com a entrada dels models. També, s'han trobat importants diferències entre l'ozó mesurat des de satèl·lit i des de la superfície terrestre, la qual cosa pot portar a diferències importants en l'UVI modelitzat. PTUV, una nova i simple parametrització pel càlcul ràpid d'UVI per condicions de cel serens, ha estat desenvolupada en base a càlculs de transferència radiativa. La parametrització mostra una bona execució tant respecte el model base com en comparació amb diverses mesures d'UVI. PTUV ha demostrat la seva utilitat per aplicacions particulars com ara l'estudi de l'evolució anual de l'UVI per un cert lloc (Girona) i la composició de mapes d'alta resolució de valors d'UVI típics per un territori concret (Catalunya). En relació a les mesures, es constata que és molt important saber la resposta espectral dels radiòmetres eritemàtics per tal d'evitar grans incerteses a la mesura d'UVI. Aquest instruments, si estan ben caracteritzats, mostren una bona comparació amb els espectroradiòmetres d'alta qualitat en la mesura d'UVI. Les qüestions més importants respecte les mesures són la calibració i estabilitat a llarg termini. També, s'ha observat un efecte de temperatura en el PTFE, un material utilitzat en els difusors en alguns instruments, cosa que potencialment podria tenir implicacions importants en el camp experimental. Finalment, i pel que fa a les comparacions model-mesura, el millor acord s'ha trobat quan es consideren mesures d'UVI d'espectroradiòmetres d'alta qualitat i s'usen models de transferència radiativa que consideren les millors dades disponibles pel que fa als paràmetres òptics d'ozó i aerosols i els seus canvis en el temps. D'aquesta manera, l'acord pot ser tan alt dins un 0.1º% en UVI, i típicament entre menys d'un 3%. Aquest acord es veu altament deteriorat si s'ignora la informació d'aerosols i depèn de manera important del valor d'albedo de dispersió simple dels aerosols. Altres dades d'entrada del model, com ara l'albedo superficial i els perfils d'ozó i temperatura introdueixen una incertesa menor en els resultats de modelització.
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.