8 resultados para Meaningful teachings
em Universitat de Girona, Spain
Resumo:
En este estudio presentamos una experiencia llevada a cabo con estudiantes de la asignatura “Psicología de la Educación” de diferentes centros universitarios. Tomando como marco de referencia las teorías constructivistas del aprendizaje, el objetivo de nuestro trabajo se centra en comprobar la incidencia de la utilización de diferentes estrategias de enseñanza por parte del profesor y de determinadas estrategias de aprendizaje en el proceso de registrar la información por parte de los estudiantes, en la significatividad del aprendizaje. Los resultados obtenidos muestran que en los grupos donde los profesores han utilizado estrategias de enseñanza diferentes a la clase magistral, se ha producido un cambio positivo en las respuestas de los estudiantes o se ha mantenido el mismo nivel, mientras que el grupo donde se ha utilizado una metodología magistral, el nivel de respuesta es inferior. Así mismo, hemos podido observar como los grupos de estudiantes que utilizan las estrategias de aprendizaje seleccionadas para tomar apuntes mejoran su nivel de respuestas, lo cual no se produce en el grupo control
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
In any discipline, where uncertainty and variability are present, it is important to have principles which are accepted as inviolate and which should therefore drive statistical modelling, statistical analysis of data and any inferences from such an analysis. Despite the fact that two such principles have existed over the last two decades and from these a sensible, meaningful methodology has been developed for the statistical analysis of compositional data, the application of inappropriate and/or meaningless methods persists in many areas of application. This paper identifies at least ten common fallacies and confusions in compositional data analysis with illustrative examples and provides readers with necessary, and hopefully sufficient, arguments to persuade the culprits why and how they should amend their ways
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.
Resumo:
Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.
Resumo:
En la literatura sobre mecànica quàntica és freqüent trobar descriptors basats en la densitat de parells o la densitat electrònica, amb un èxit divers segons les aplicacions que atenyin. Per tal de que tingui sentit químic un descriptor ha de donar la definició d'un àtom en una molècula, o ésser capaç d'identificar regions de l'espai molecular associades amb algun concepte químic (com pot ser un parell solitari o zona d'enllaç, entre d'altres). En aquesta línia, s'han proposat diversos esquemes de partició: la teoria d'àtoms en molècules (AIM), la funció de localització electrònica (ELF), les cel·les de Voroni, els àtoms de Hirshfeld, els àtoms difusos, etc. L'objectiu d'aquesta tesi és explorar descriptors de la densitat basats en particions de l'espai molecular del tipus AIM, ELF o àtoms difusos, analitzar els descriptors existents amb diferents nivells de teoria, proposar nous descriptors d'aromaticitat, així com estudiar l'habilitat de totes aquestes eines per discernir entre diferents mecanismes de reacció.