4 resultados para MULTIVARIATE GARCH
em Universitat de Girona, Spain
Resumo:
A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts
Resumo:
In order to obtain a high-resolution Pleistocene stratigraphy, eleven continuously cored boreholes, 100 to 220m deep were drilled in the northern part of the Po Plain by Regione Lombardia in the last five years. Quantitative provenance analysis (QPA, Weltje and von Eynatten, 2004) of Pleistocene sands was carried out by using multivariate statistical analysis (principal component analysis, PCA, and similarity analysis) on an integrated data set, including high-resolution bulk petrography and heavy-mineral analyses on Pleistocene sands and of 250 major and minor modern rivers draining the southern flank of the Alps from West to East (Garzanti et al, 2004; 2006). Prior to the onset of major Alpine glaciations, metamorphic and quartzofeldspathic detritus from the Western and Central Alps was carried from the axial belt to the Po basin longitudinally parallel to the SouthAlpine belt by a trunk river (Vezzoli and Garzanti, 2008). This scenario rapidly changed during the marine isotope stage 22 (0.87 Ma), with the onset of the first major Pleistocene glaciation in the Alps (Muttoni et al, 2003). PCA and similarity analysis from core samples show that the longitudinal trunk river at this time was shifted southward by the rapid southward and westward progradation of transverse alluvial river systems fed from the Central and Southern Alps. Sediments were transported southward by braided river systems as well as glacial sediments transported by Alpine valley glaciers invaded the alluvial plain. Kew words: Detrital modes; Modern sands; Provenance; Principal Components Analysis; Similarity, Canberra Distance; palaeodrainage
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Resumo:
ABSRACT This thesis focuses on the monitoring, fault detection and diagnosis of Wastewater Treatment Plants (WWTP), which are important fields of research for a wide range of engineering disciplines. The main objective is to evaluate and apply a novel artificial intelligent methodology based on situation assessment for monitoring and diagnosis of Sequencing Batch Reactor (SBR) operation. To this end, Multivariate Statistical Process Control (MSPC) in combination with Case-Based Reasoning (CBR) methodology was developed, which was evaluated on three different SBR (pilot and lab-scales) plants and validated on BSM1 plant layout.