3 resultados para MIMIC computer

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is often associated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcifications is performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcifications have been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the sense of adding new features not only related to the shape

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La present tesi està centrada en l'ús de la Teoria de Semblança Quàntica per a calcular descriptors moleculars. Aquests descriptors s'utilitzen com a paràmetres estructurals per a derivar correlacions entre l'estructura i la funció o activitat experimental per a un conjunt de compostos. Els estudis de Relacions Quantitatives Estructura-Activitat són d'especial interès per al disseny racional de molècules assistit per ordinador i, en particular, per al disseny de fàrmacs. Aquesta memòria consta de quatre parts diferenciades. En els dos primers blocs es revisen els fonaments de la teoria de semblança quàntica, així com l'aproximació topològica basada en la teoria de grafs. Ambdues teories es fan servir per a calcular els descriptors moleculars. En el segon bloc, s'ha de remarcar la programació i implementació de programari per a calcular els anomenats índexs topològics de semblança quàntica. La tercera secció detalla les bases de les Relacions Quantitatives Estructura-Activitat i, finalment, el darrer apartat recull els resultats d'aplicació obtinguts per a diferents sistemes biològics.

Relevância:

20.00% 20.00%

Publicador: