11 resultados para Key words Epidemiology
em Universitat de Girona, Spain
Resumo:
There is almost not a case in exploration geology, where the studied data doesn’t includes below detection limits and/or zero values, and since most of the geological data responds to lognormal distributions, these “zero data” represent a mathematical challenge for the interpretation. We need to start by recognizing that there are zero values in geology. For example the amount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-exists with nepheline. Another common essential zero is a North azimuth, however we can always change that zero for the value of 360°. These are known as “Essential zeros”, but what can we do with “Rounded zeros” that are the result of below the detection limit of the equipment? Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimes we need to differentiate between a sodic and a potassic alteration. Pre-classification into groups requires a good knowledge of the distribution of the data and the geochemical characteristics of the groups which is not always available. Considering the zero values equal to the limit of detection of the used equipment will generate spurious distributions, especially in ternary diagrams. Same situation will occur if we replace the zero values by a small amount using non-parametric or parametric techniques (imputation). The method that we are proposing takes into consideration the well known relationships between some elements. For example, in copper porphyry deposits, there is always a good direct correlation between the copper values and the molybdenum ones, but while copper will always be above the limit of detection, many of the molybdenum values will be “rounded zeros”. So, we will take the lower quartile of the real molybdenum values and establish a regression equation with copper, and then we will estimate the “rounded” zero values of molybdenum by their corresponding copper values. The method could be applied to any type of data, provided we establish first their correlation dependency. One of the main advantages of this method is that we do not obtain a fixed value for the “rounded zeros”, but one that depends on the value of the other variable. Key words: compositional data analysis, treatment of zeros, essential zeros, rounded zeros, correlation dependency
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositional data. Nevertheless, the use of this methodology is only possible for those data sets without null values. Consequently, in those data sets where the zeros are present, a previous treatment becomes necessary. Last advances in the treatment of compositional zeros have been centered especially in the zeros of structural nature and in the rounded zeros. These tools do not contemplate the particular case of count compositional data sets with null values. In this work we deal with \count zeros" and we introduce a treatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichlet probability distribution as a prior and we estimate the posterior probabilities. Then we apply a multiplicative modi¯cation for the non-zero values. We present a case study where this new methodology is applied. Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
Simpson's paradox, also known as amalgamation or aggregation paradox, appears when dealing with proportions. Proportions are by construction parts of a whole, which can be interpreted as compositions assuming they only carry relative information. The Aitchison inner product space structure of the simplex, the sample space of compositions, explains the appearance of the paradox, given that amalgamation is a nonlinear operation within that structure. Here we propose to use balances, which are specific elements of this structure, to analyse situations where the paradox might appear. With the proposed approach we obtain that the centre of the tables analysed is a natural way to compare them, which avoids by construction the possibility of a paradox. Key words: Aitchison geometry, geometric mean, orthogonal projection
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry
Resumo:
By using suitable parameters, we present a uni¯ed aproach for describing four methods for representing categorical data in a contingency table. These methods include: correspondence analysis (CA), the alternative approach using Hellinger distance (HD), the log-ratio (LR) alternative, which is appropriate for compositional data, and the so-called non-symmetrical correspondence analysis (NSCA). We then make an appropriate comparison among these four methods and some illustrative examples are given. Some approaches based on cumulative frequencies are also linked and studied using matrices. Key words: Correspondence analysis, Hellinger distance, Non-symmetrical correspondence analysis, log-ratio analysis, Taguchi inertia
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades <-1 to >9) were separated, and each fraction was analysed for its chemical composition. The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø <8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar). To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend. Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
The aim of this talk is to convince the reader that there are a lot of interesting statistical problems in presentday life science data analysis which seem ultimately connected with compositional statistics. Key words: SAGE, cDNA microarrays, (1D-)NMR, virus quasispecies
Resumo:
Pounamu (NZ jade), or nephrite, is a protected mineral in its natural form following the transfer of ownership back to Ngai Tahu under the Ngai Tahu (Pounamu Vesting) Act 1997. Any theft of nephrite is prosecutable under the Crimes Act 1961. Scientific evidence is essential in cases where origin is disputed. A robust method for discrimination of this material through the use of elemental analysis and compositional data analysis is required. Initial studies have characterised the variability within a given nephrite source. This has included investigation of both in situ outcrops and alluvial material. Methods for the discrimination of two geographically close nephrite sources are being developed. Key Words: forensic, jade, nephrite, laser ablation, inductively coupled plasma mass spectrometry, multivariate analysis, elemental analysis, compositional data analysis
Resumo:
In 2000 the European Statistical Office published the guidelines for developing the Harmonized European Time Use Surveys system. Under such a unified framework, the first Time Use Survey of national scope was conducted in Spain during 2002– 03. The aim of these surveys is to understand human behavior and the lifestyle of people. Time allocation data are of compositional nature in origin, that is, they are subject to non-negativity and constant-sum constraints. Thus, standard multivariate techniques cannot be directly applied to analyze them. The goal of this work is to identify homogeneous Spanish Autonomous Communities with regard to the typical activity pattern of their respective populations. To this end, fuzzy clustering approach is followed. Rather than the hard partitioning of classical clustering, where objects are allocated to only a single group, fuzzy method identify overlapping groups of objects by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey microdata. As a result, a map distinguishing Autonomous Communities with similar activity pattern is drawn. Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data