2 resultados para Interfacial layers

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05layers strain inhomogeneities are dominant. This evolution in line with layer thickness is due to the atomic diffusion at the surface during growth, induced by the strain inhomogeneities that arise from stress relaxation. In consequence, the strain variations present in the layer are converted into composition variations during growth. This process is energetically favorable as it diminishes elastic energy. An additional support to this hypothesis is given by a clear proportionality between the magnitude of the composition variations and the mean strain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness