3 resultados para Integrated Catchment Management
em Universitat de Girona, Spain
Resumo:
We present a system for dynamic network resource configuration in environments with bandwidth reservation and path restoration mechanisms. Our focus is on the dynamic bandwidth management results, although the main goal of the system is the integration of the different mechanisms that manage the reserved paths (bandwidth, restoration, and spare capacity planning). The objective is to avoid conflicts between these mechanisms. The system is able to dynamically manage a logical network such as a virtual path network in ATM or a label switch path network in MPLS. This system has been designed to be modular in the sense that in can be activated or deactivated, and it can be applied only in a sub-network. The system design and implementation is based on a multi-agent system (MAS). We also included details of its architecture and implementation
Resumo:
The main objective pursued in this thesis targets the development and systematization of a methodology that allows addressing management problems in the dynamic operation of Urban Wastewater Systems. The proposed methodology will suggest operational strategies that can improve the overall performance of the system under certain problematic situations through a model-based approach. The proposed methodology has three main steps: The first step includes the characterization and modeling of the case-study, the definition of scenarios, the evaluation criteria and the operational settings that can be manipulated to improve the system’s performance. In the second step, Monte Carlo simulations are launched to evaluate how the system performs for a wide range of operational settings combinations, and a global sensitivity analysis is conducted to rank the most influential operational settings. Finally, the third step consists on a screening methodology applying a multi-criteria analysis to select the best combinations of operational settings.
Resumo:
This dissertation has as its goal the quantitative evaluation of the application of coupled hydrodynamic, ecological and clarity models, to address the deterministic prediction of water clarity in lakes and reservoirs. Prediction of water clarity is somewhat unique, insofar as it represents the integrated and coupled effects of a broad range of individual water quality components. These include the biological components such as phytoplankton, together with the associated cycles of nutrients that are needed to sustain their popuiations, and abiotic components such as suspended particles that may be introduced by streams, atmospheric deposition or sediment resuspension. Changes in clarity induced by either component will feed back on the phytoplankton dynamics, as incident light also affects biological growth. Thus ability to successfully model changes in clarity will by necessity have to achieve the correct modeling of these other water quality parameters. Water clarity is also unique in that it may be one of the earliest and most easily detected wamings of the acceleration of the process of eutrophication in a water body.