2 resultados para Intakes (Hydraulic engineering)
em Universitat de Girona, Spain
Experience in introduction of English terminology in engineering lessons: methodology and evaluation
Resumo:
This communication explains a experience for the introduction of English terminology in a technical degree of higher education. We present the methodology and assessment procedures used to evaluate the way the students perceived the introduction of terminology in English in two different subjects from 3rd and 5th year courses of a Computer Science degree in which English was not the vehicular language. We propose a strategy based on two main pillars, namely: 1) The design of materials, explanations, and exams, paying particular attention to the way in which the specific terminology was exposed to the students, and 2) The assessment of the impact in the students by means of the analysis of the feedback trough a set of enquiries. Our experience showed that the students responded very positively to the introduction of English terminology, and presented an affirmative feedback about the impact that an improvement of their linguistic abilities would have in their future work. Further, we present statistics regarding the use of English as the vehicular language for technical reports, which is envisaged as very useful by the students. Finally, we propose a set of questions for further debate which are centered in the role that English terminology should pay in technical degrees, and about the way in which universities should deploy resources in English languages within the different Syllabus
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system