1 resultado para Guided missiles.
em Universitat de Girona, Spain
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (159)
- Boston University Digital Common (5)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (12)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (7)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Escola Superior de Educação de Paula Frassinetti (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (37)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (39)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (3)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (286)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (5)
- Scielo España (2)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (9)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (2)
- University of Michigan (115)
- University of Queensland eSpace - Australia (8)
- University of Washington (4)
- WestminsterResearch - UK (3)
Resumo:
Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach