4 resultados para GENUS LIOLAEMUS
em Universitat de Girona, Spain
Resumo:
Germination experiments were performed with seeds of two species of genus Allium section Allium, a rare and endangered species A. pyrenaicum and a common A. sphaerocephalon. Different pre-treatments and a photoperiod of 24 h darkness were applied in order to simulate different germination conditions. Both species showed a high percentage of viable seeds a part of which were dormant. An elevate percentage of dormant seeds could be caused by a later collection time. Low altitude populations had more mortality than the others, possibly caused by the hard summer conditions during flowering and fruiting time. Comparisons between dates of species coexistence localities only show inter-population variability and it could be caused by the detected dormancy. Darkness accelerates germination, possibly for elongation radicle stimulation. Heat-shock pre-treatments decreased germination time in seeds from localities where fire is a probable event. The rarity of A. Pyrenaicum not seems to be caused by restricted germination requirements but is attributable to distinct habitat preferences, related to his altitudinal range of distribution
Resumo:
Geographical distribution, habitat and reproductive phenology of the Genus Kallymenia (Gigartinales, Rhodophyta) from Catalonia, Spain
Resumo:
The morphology and reproductive structures of Mediterranean species of the genus Nemastoma J. Agardh, nom. cons. (Nemastomataceae, Nemastomatales): Nemastoma dichotomum and N. dumontioides
Resumo:
Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. Methodology: After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Conclusions: Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned