3 resultados para Fuzzy Modelling, Short Circuit, GMAW-P, Welding, Gas Metal Arc Welding
em Universitat de Girona, Spain
Resumo:
The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time
Resumo:
The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the most important targets in monitoring programs. From a general point of view, many systematic (often cyclic) and random processes control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statistical modelling. Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) from eight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed by considering their dependence from time in the period 2000-2007. Each intermediate chemical composition has been considered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007 samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumaroles F5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve the proposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations, features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and in the evaluation of the natural risk related to a quiescent volcano
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately