4 resultados para Faculty of memory

em Universitat de Girona, Spain


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have been reported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a general agreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstream of EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However, there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKI efficacy. We recently monitored gene expression profiles and sub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin, epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cell sensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated (up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times) of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second, loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breast cancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells. In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene, oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 function also leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands, and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. The relevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypass the antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting for measurement error. From the various specifications, Jöreskog and Yang's (1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we compare regression models obtained to predict PhD students’ academic performance in the universities of Girona (Spain) and Slovenia. Explanatory variables are characteristics of PhD student’s research group understood as an egocentered social network, background and attitudinal characteristics of the PhD students and some characteristics of the supervisors. Academic performance was measured by the weighted number of publications. Two web questionnaires were designed, one for PhD students and one for their supervisors and other research group members. Most of the variables were easily comparable across universities due to the careful translation procedure and pre-tests. When direct comparison was not possible we created comparable indicators. We used a regression model in which the country was introduced as a dummy coded variable including all possible interaction effects. The optimal transformations of the main and interaction variables are discussed. Some differences between Slovenian and Girona universities emerge. Some variables like supervisor’s performance and motivation for autonomy prior to starting the PhD have the same positive effect on the PhD student’s performance in both countries. On the other hand, variables like too close supervision by the supervisor and having children have a negative influence in both countries. However, we find differences between countries when we observe the motivation for research prior to starting the PhD which increases performance in Slovenia but not in Girona. As regards network variables, frequency of supervisor advice increases performance in Slovenia and decreases it in Girona. The negative effect in Girona could be explained by the fact that additional contacts of the PhD student with his/her supervisor might indicate a higher workload in addition to or instead of a better advice about the dissertation. The number of external student’s advice relationships and social support mean contact intensity are not significant in Girona, but they have a negative effect in Slovenia. We might explain the negative effect of external advice relationships in Slovenia by saying that a lot of external advice may actually result from a lack of the more relevant internal advice