3 resultados para FULL HYDRATION

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Els estudis de pedagogia de la Universitat de Girona s’han dotat d’un Full de Ruta. El document el composen dotze eixos de treball que són ambiciosos però que, els redactors, consideren necessaris en un moment en què el pedagog ha traspassat l’àmbit escolar per diversificar la seva actuació cap a altres àmbits com són el social, el cultural, el de la comunicació o el laboral

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic Engineering objective is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization in MPLS networks, few of them have been focused in LSR label space reduction. This letter studies Asymmetric Merged Tunneling (AMT) as a new method for reducing the label space in MPLS network. The proposed method may be regarded as a combination of label merging (proposed in the MPLS architecture) and asymmetric tunneling (proposed recently in our previous works). Finally, simulation results are performed by comparing AMT with both ancestors. They show a great improvement in the label space reduction factor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40MPa amplitude (5ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect