4 resultados para FLUCTUATION RELATIONS

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An erratum to the article "The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization", published in The Journal Chemistry of Physics, 2005, v.122, art. no.014109. Values FLU have been corrected in the last column of Table I because they were not correct

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the aromatic fluctuation index (FLU) that describes the fluctuation of electronic charge between adjacent atoms in a given ring is introduced as a new aromaticity measure. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized circulation of π electrons. It is defined not only considering the amount of electron sharing between contiguous atoms, which should be substantial in aromatic molecules, but also taking into account the similarity of electron sharing between adjacent atoms. For a series of rings in 15 planar polycyclic aromatic hydrocarbons, we have found that, in general, FLU is strongly correlated with other widely used indicators of local aromaticity, such as the harmonic-oscillator model of aromaticity, the nucleus independent chemical shift, and the para-delocalization index (PDI). In contrast to PDI, the FLU index can be applied to study the aromaticity of rings with any number of members and it can be used to analyze both the local and global aromatic character of rings and molecules

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of connections among several nuclear and electronic indexes of reactivity in the framework of the conceptual Density Functional Theory by using an expansion ofthe energy functional in terms of the total number of electrons and the normal coordinates within a canonical ensemble was derived. The relations obtained provided explicit links between important quantities related to the chemical reactivity of a system. This paper particularly demonstrates that the derivative of the electronic energy with respect to the external potential of a system in its equilibrium geometry was equal to the negative of the nuclear repulsion derivative with respect to the external potential