7 resultados para Estimators
em Universitat de Girona, Spain
Resumo:
Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging. When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positive variables, has no straightforward way to build consistent and optimal confidence intervals for estimates. These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure
Resumo:
Most of economic literature has presented its analysis under the assumption of homogeneous capital stock. However, capital composition differs across countries. What has been the pattern of capital composition associated with World economies? We make an exploratory statistical analysis based on compositional data transformed by Aitchinson logratio transformations and we use tools for visualizing and measuring statistical estimators of association among the components. The goal is to detect distinctive patterns in the composition. As initial findings could be cited that: 1. Sectorial components behaved in a correlated way, building industries on one side and , in a less clear view, equipment industries on the other. 2. Full sample estimation shows a negative correlation between durable goods component and other buildings component and between transportation and building industries components. 3. Countries with zeros in some components are mainly low income countries at the bottom of the income category and behaved in a extreme way distorting main results observed in the full sample. 4. After removing these extreme cases, conclusions seem not very sensitive to the presence of another isolated cases
Resumo:
In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown
Resumo:
Aquesta tesi s'emmarca dins del projecte CICYT TAP 1999-0443-C05-01. L'objectiu d'aquest projecte és el disseny, implementació i avaluació de robots mòbils, amb un sistema de control distribuït, sistemes de sensorització i xarxa de comunicacions per realitzar tasques de vigilància. Els robots han de poder-se moure per un entorn reconeixent la posició i orientació dels diferents objectes que l'envolten. Aquesta informació ha de permetre al robot localitzar-se dins de l'entorn on es troba per poder-se moure evitant els possibles obstacles i dur a terme la tasca encomanada. El robot ha de generar un mapa dinàmic de l'entorn que serà utilitzat per localitzar la seva posició. L'objectiu principal d'aquest projecte és aconseguir que un robot explori i construeixi un mapa de l'entorn sense la necessitat de modificar el propi entorn. Aquesta tesi està enfocada en l'estudi de la geometria dels sistemes de visió estereoscòpics formats per dues càmeres amb l'objectiu d'obtenir informació geomètrica 3D de l'entorn d'un vehicle. Aquest objectiu tracta de l'estudi del modelatge i la calibració de càmeres i en la comprensió de la geometria epipolar. Aquesta geometria està continguda en el que s'anomena emph{matriu fonamental}. Cal realitzar un estudi del càlcul de la matriu fonamental d'un sistema estereoscòpic amb la finalitat de reduir el problema de la correspondència entre dos plans imatge. Un altre objectiu és estudiar els mètodes d'estimació del moviment basats en la geometria epipolar diferencial per tal de percebre el moviment del robot i obtenir-ne la posició. Els estudis de la geometria que envolta els sistemes de visió estereoscòpics ens permeten presentar un sistema de visió per computador muntat en un robot mòbil que navega en un entorn desconegut. El sistema fa que el robot sigui capaç de generar un mapa dinàmic de l'entorn a mesura que es desplaça i determinar quin ha estat el moviment del robot per tal de emph{localitzar-se} dins del mapa. La tesi presenta un estudi comparatiu dels mètodes de calibració de càmeres més utilitzats en les últimes dècades. Aquestes tècniques cobreixen un gran ventall dels mètodes de calibració clàssics. Aquest mètodes permeten estimar els paràmetres de la càmera a partir d'un conjunt de punts 3D i de les seves corresponents projeccions 2D en una imatge. Per tant, aquest estudi descriu un total de cinc tècniques de calibració diferents que inclouen la calibració implicita respecte l'explicita i calibració lineal respecte no lineal. Cal remarcar que s'ha fet un gran esforç en utilitzar la mateixa nomenclatura i s'ha estandaritzat la notació en totes les tècniques presentades. Aquesta és una de les dificultats principals a l'hora de poder comparar les tècniques de calibració ja què cada autor defineix diferents sistemes de coordenades i diferents conjunts de paràmetres. El lector és introduït a la calibració de càmeres amb la tècnica lineal i implícita proposada per Hall i amb la tècnica lineal i explicita proposada per Faugeras-Toscani. A continuació es passa a descriure el mètode a de Faugeras incloent el modelatge de la distorsió de les lents de forma radial. Seguidament es descriu el conegut mètode proposat per Tsai, i finalment es realitza una descripció detallada del mètode de calibració proposat per Weng. Tots els mètodes són comparats tant des del punt de vista de model de càmera utilitzat com de la precisió de la calibració. S'han implementat tots aquests mètodes i s'ha analitzat la precisió presentant resultats obtinguts tant utilitzant dades sintètiques com càmeres reals. Calibrant cada una de les càmeres del sistema estereoscòpic es poden establir un conjunt de restriccions geomètri ques entre les dues imatges. Aquestes relacions són el que s'anomena geometria epipolar i estan contingudes en la matriu fonamental. Coneixent la geometria epipolar es pot: simplificar el problema de la correspondència reduint l'espai de cerca a llarg d'una línia epipolar; estimar el moviment d'una càmera quan aquesta està muntada sobre un robot mòbil per realitzar tasques de seguiment o de navegació; reconstruir una escena per aplicacions d'inspecció, propotipatge o generació de motlles. La matriu fonamental s'estima a partir d'un conjunt de punts en una imatges i les seves correspondències en una segona imatge. La tesi presenta un estat de l'art de les tècniques d'estimació de la matriu fonamental. Comença pels mètode lineals com el dels set punts o el mètode dels vuit punts, passa pels mètodes iteratius com el mètode basat en el gradient o el CFNS, fins arribar las mètodes robustos com el M-Estimators, el LMedS o el RANSAC. En aquest treball es descriuen fins a 15 mètodes amb 19 implementacions diferents. Aquestes tècniques són comparades tant des del punt de vista algorísmic com des del punt de vista de la precisió que obtenen. Es presenten el resultats obtinguts tant amb imatges reals com amb imatges sintètiques amb diferents nivells de soroll i amb diferent quantitat de falses correspondències. Tradicionalment, l'estimació del moviment d'una càmera està basada en l'aplicació de la geometria epipolar entre cada dues imatges consecutives. No obstant el cas tradicional de la geometria epipolar té algunes limitacions en el cas d'una càmera situada en un robot mòbil. Les diferencies entre dues imatges consecutives són molt petites cosa que provoca inexactituds en el càlcul de matriu fonamental. A més cal resoldre el problema de la correspondència, aquest procés és molt costós en quant a temps de computació i no és gaire efectiu per aplicacions de temps real. En aquestes circumstàncies les tècniques d'estimació del moviment d'una càmera solen basar-se en el flux òptic i en la geometria epipolar diferencial. En la tesi es realitza un recull de totes aquestes tècniques degudament classificades. Aquests mètodes són descrits unificant la notació emprada i es remarquen les semblances i les diferencies entre el cas discret i el cas diferencial de la geometria epipolar. Per tal de poder aplicar aquests mètodes a l'estimació de moviment d'un robot mòbil, aquest mètodes generals que estimen el moviment d'una càmera amb sis graus de llibertat, han estat adaptats al cas d'un robot mòbil que es desplaça en una superfície plana. Es presenten els resultats obtinguts tant amb el mètodes generals de sis graus de llibertat com amb els adaptats a un robot mòbil utilitzant dades sintètiques i seqüències d'imatges reals. Aquest tesi finalitza amb una proposta de sistema de localització i de construcció d'un mapa fent servir un sistema estereoscòpic situat en un robot mòbil. Diverses aplicacions de robòtica mòbil requereixen d'un sistema de localització amb l'objectiu de facilitar la navegació del vehicle i l'execució del les trajectòries planificades. La localització es sempre relativa al mapa de l'entorn on el robot s'està movent. La construcció de mapes en un entorn desconegut és una tasca important a realitzar per les futures generacions de robots mòbils. El sistema que es presenta realitza la localització i construeix el mapa de l'entorn de forma simultània. A la tesi es descriu el robot mòbil GRILL, que ha estat la plataforma de treball emprada per aquesta aplicació, amb el sistema de visió estereoscòpic que s'ha dissenyat i s'ha muntat en el robot. També es descriu tots el processos que intervenen en el sistema de localització i construcció del mapa. La implementació d'aquest processos ha estat possible gràcies als estudis realitzats i presentats prèviament (calibració de càmeres, estimació de la matriu fonamental, i estimació del moviment) sense els quals no s'hauria pogut plantejar aquest sistema. Finalment es presenten els mapes en diverses trajectòries realitzades pel robot GRILL en el laboratori. Les principals contribucions d'aquest treball són: ·Un estat de l'art sobre mètodes de calibració de càmeres. El mètodes són comparats tan des del punt de vista del model de càmera utilitzat com de la precisió dels mètodes. ·Un estudi dels mètodes d'estimació de la matriu fonamental. Totes les tècniques estudiades són classificades i descrites des d'un punt de vista algorísmic. ·Un recull de les tècniques d'estimació del moviment d'una càmera centrat en el mètodes basat en la geometria epipolar diferencial. Aquestes tècniques han estat adaptades per tal d'estimar el moviment d'un robot mòbil. ·Una aplicació de robòtica mòbil per tal de construir un mapa dinàmic de l'entorn i localitzar-se per mitja d'un sistema estereoscòpic. L'aplicació presentada es descriu tant des del punt de vista del maquinari com del programari que s'ha dissenyat i implementat.