8 resultados para Energy Efficient Routing Protocols
em Universitat de Girona, Spain
Resumo:
This dissertation focuses on the problem of providing mechanisms for routing point to point and multipoint connections in ATM networks. In general the notion of multipoint connection refers to connections that involve a group of users with more than two members. The main objective of this dissertation is to contribute to design efficient routing protocols with alterative routes in fully connected VP-based ATM Networks for call establishment of point to point and multipoint VC connections. An efficient route should be computed during this connection establishment phase.
Resumo:
In this paper a novel methodology aimed at minimizing the probability of network failure and the failure impact (in terms of QoS degradation) while optimizing the resource consumption is introduced. A detailed study of MPLS recovery techniques and their GMPLS extensions are also presented. In this scenario, some features for reducing the failure impact and offering minimum failure probabilities at the same time are also analyzed. Novel two-step routing algorithms using this methodology are proposed. Results show that these methods offer high protection levels with optimal resource consumption
Resumo:
IP based networks still do not have the required degree of reliability required by new multimedia services, achieving such reliability will be crucial in the success or failure of the new Internet generation. Most of existing schemes for QoS routing do not take into consideration parameters concerning the quality of the protection, such as packet loss or restoration time. In this paper, we define a new paradigm to develop new protection strategies for building reliable MPLS networks, based on what we have called the network protection degree (NPD). This NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability and an a posteriori evaluation, the failure impact degree (FID), to determine the impact on the network in case of failure. Having mathematical formulated these components, we point out the most relevant components. Experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms to offer a certain degree of protection
Resumo:
A survey of MPLS protection methods and their utilization in combination with online routing methods is presented in this article. Usually, fault management methods pre-establish backup paths to recover traffic after a failure. In addition, MPLS allows the creation of different backup types, and hence MPLS is a suitable method to support traffic-engineered networks. In this article, an introduction of several label switch path backup types and their pros and cons are pointed out. The creation of an LSP involves a routing phase, which should include QoS aspects. In a similar way, to achieve a reliable network the LSP backups must also be routed by a QoS routing method. When LSP creation requests arrive one by one (a dynamic network scenario), online routing methods are applied. The relationship between MPLS fault management and QoS online routing methods is unavoidable, in particular during the creation of LSP backups. Both aspects are discussed in this article. Several ideas on how these actual technologies could be applied together are presented and compared
Resumo:
In this paper, a method for enhancing current QoS routing methods by means of QoS protection is presented. In an MPLS network, the segments (links) to be protected are predefined and an LSP request involves, apart from establishing a working path, creating a specific type of backup path (local, reverse or global). Different QoS parameters, such as network load balancing, resource optimization and minimization of LSP request rejection should be considered. QoS protection is defined as a function of QoS parameters, such as packet loss, restoration time, and resource optimization. A framework to add QoS protection to many of the current QoS routing algorithms is introduced. A backup decision module to select the most suitable protection method is formulated and different case studies are analyzed
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper