5 resultados para ENERGY LANDSCAPE MODEL
em Universitat de Girona, Spain
Resumo:
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40MPa amplitude (5ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect
Resumo:
Utilitzant temperatura i pressió com a agents desnaturalitzants s'ha explorat la contribució a l'estabilitat de diferents residus del principal nucli hidrofòbic de la RNasa A. Aquests resutats suggereixen que el principal nucli hidrofòbic d'aquest enzim, està fortament empaquetat i ha revelat l'existència de reordenacions en l'interior de la proteïna. El mètode dels valors , han permès estudiar el paper de les interaccions hidrofòbiques establertes pels residus del principal nucli hidrofòbic de la RNasa A en el seu estat de transició induït per pressió. En conjunt, aquests resultats suggereixen que l'estat de transició de la RNasa A, s'assemblaria a un glòbul col·lapsat amb una cadena estructurada però amb un debilitat nucli hidrofòbic. S'ha explorat també, el paisatge energètic del plegament/desplegament proteic de la variant Y115W de la RNasa A. L'estat de transició sembla interaccionar fortament amb la capa d'hidratació d'aquest estat, tal i com indiquen els resultats en presència de glicerol.
Resumo:
El plantejament inicial d'aquesta investigació parteix de la hipòtesi que assenyala que qualsevol procés d'interacció de l'individu amb el paisatge té connotacions comunicatives que cal destriar i, en aquest sentit, es fa necessari establir uns paràmetres d'anàlisi que permetin interpretar els processos de vivència i d'apropiació del paisatge en clau de manifestació comunicativa i, més concretament, des de la perspectiva de la comunicació intrapersonal
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model