3 resultados para ELEVATION
em Universitat de Girona, Spain
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation
Resumo:
Se presenta un programa desarrollado mediante GRASS 6.2 que permite calcular el tiempo de concentración en cuencas hidrográficas a partir del modelo digital de elevaciones. El hecho de que no haya ningún comando específico en GRASS que permita calcular el tiempo de concentración nos ha llevado a calcular éste a partir de aquellos comandos que aportan información hidrográfica, utilizando básicamente r.watershed. Además, se analizan los comandos GRASS que dan las direcciones de flujo, sus semejanzas, discrepancias y utilidades. Finalmente, se comparan los resultados obtenidos aplicando diferentes valores a la técnica de adaptación del modelo digital de elevaciones a partir de la información vectorial de la red hidrográfica existente
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach