2 resultados para Domain specific modeling
em Universitat de Girona, Spain
Resumo:
During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia
Resumo:
The main objective of this thesis was the integration of microstructure information in synoptic descriptors of turbulence, that reflects the mixing processes. Turbulent patches are intermittent in space and time, but they represent the dominant process for mixing. In this work, the properties of turbulent patches were considered the potential input for integrating the physical microscale measurements. The development of a method for integrating the properties of the turbulent patches required solving three main questions: a) how can we detect the turbulent patches from he microstructure measurements?; b) which are the most relevant properties of the turbulent patches?; and ) once an interval of time has been selected, what kind of synoptic parameters could better reflect the occurrence and properties of the turbulent patches? The answers to these questions were the final specific objectives of this thesis.