3 resultados para Domain representation in OWL
em Universitat de Girona, Spain
Resumo:
La implantació de Sistemes de Suport a la presa de Decisions (SSD) en Estacions Depuradores d'Aigües Residuals Urbanes (EDAR) facilita l'aplicació de tècniques més eficients basades en el coneixement per a la gestió del procés, assegurant la qualitat de l'aigua de sortida tot minimitzant el cost ambiental de la seva explotació. Els sistemes basats en el coneixement es caracteritzen per la seva capacitat de treballar amb dominis molt poc estructurats, i gran part de la informació rellevant de tipus qualitatiu i/o incerta. Precisament aquests són els trets característics que es poden trobar en els sistemes biològics de depuració, i en conseqüència en una EDAR. No obstant, l'elevada complexitat dels SSD fa molt costós el seu disseny, desenvolupament i aplicació en planta real, pel que resulta determinant la generació d'un protocol que faciliti la seva exportació a EDARs de tecnologia similar. L'objectiu del present treball de Tesi és precisament el desenvolupament d'un protocol que faciliti l'exportació sistemàtica de SSD i l'aprofitament del coneixement del procés prèviament adquirit. El treball es desenvolupa en base al cas d'estudi resultant de l'exportació a l'EDAR Montornès del prototipus original de SSD implementat a l'EDAR Granollers. Aquest SSD integra dos tipus de sistemes basats en el coneixement, concretament els sistemes basats en regles (els quals són programes informàtics que emulen el raonament humà i la seva capacitat de solucionar problemes utilitzant les mateixes fonts d'informació) i els sistemes de raonament basats en casos (els quals són programes informàtics basats en el coneixement que volen solucionar les situacions anormals que pateix la planta en el moment actual mitjançant el record de l'acció efectuada en una situació passada similar). El treball està estructurat en diferents capítols, en el primer dels quals, el lector s'introdueix en el món dels sistemes de suport a la decisió i en el domini de la depuració d'aigües. Seguidament es fixen els objectius i es descriuen els materials i mètodes utilitzats. A continuació es presenta el prototipus de SSD desenvolupat per la EDAR Granollers. Una vegada el prototipus ha estat presentat es descriu el primer protocol plantejat pel mateix autor de la Tesi en el seu Treball de Recerca. A continuació es presenten els resultats obtinguts en l'aplicació pràctica del protocol per generar un nou SSD, per una planta depuradora diferent, partint del prototipus. L'aplicació pràctica del protocol permet l'evolució del mateix cap a un millor pla d'exportació. Finalment, es pot concloure que el nou protocol redueix el temps necessari per realitzar el procés d'exportació, tot i que el nombre de passos necessaris ha augmentat, la qual cosa significa que el nou protocol és més sistemàtic.
Resumo:
Las superfícies implícitas son útiles en muchas áreasde los gráficos por ordenador. Una de sus principales ventajas es que pueden ser fácilmente usadas como primitivas para modelado. Aun asi, no son muy usadas porque su visualización toma bastante tiempo. Cuando se necesita una visualización precisa, la mejor opción es usar trazado de rayos. Sin embargo, pequeñas partes de las superficies desaparecen durante la visualización. Esto ocurre por la truncación que se presenta en la representación en punto flotante de los ordenadores; algunos bits se puerden durante las operaciones matemáticas en los algoritmos de intersección. En este tesis se presentan algoritmos para solucionar esos problemas. La investigación se basa en el uso del Análisis Intervalar Modal el cual incluye herramientas para resolver problemas con incertidumbe cuantificada. En esta tesis se proporcionan los fundamentos matemáticos necesarios para el desarrollo de estos algoritmos.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos