3 resultados para Data centres
em Universitat de Girona, Spain
Resumo:
We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies
Resumo:
Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices
Resumo:
En aquesta tesi es fa una valoració dels elements que incideixen en les creences dels mestres d'educació infantil i primària i dels professionals dels EAP respecte la detecció dels alumnes amb altes capacitats i les principals mesures d'intervenció educativa. Els instruments utilitzats són els propis de les metodologies naturalistes i quasi experimentals. L'anàlisi de resultats obtinguts llarg de tres cursos escolars recull les creences dels mestres i EAP a partir de diferents fonts d'informació: entrevistes, descripció de casos, anàlisi de dades, valoració de normativa i dos qüestionaris, un per a mestres i l'altre per a EAP. Els resultats posen en evidència una molt baixa detecció, insuficiència de regulació legal, eines de diagnòstic febles, dispersió documental i falta de formació. Es detecten contradiccions entre les creences i les pràctiques. Finalment es proposa una redefinició del concepte Altes Capacitats-superdotació des dels àmbits de l'eficàcia, del perfil i del rendiment escolar.