5 resultados para Covariance matrix
em Universitat de Girona, Spain
Resumo:
We propose to analyze shapes as “compositions” of distances in Aitchison geometry as an alternate and complementary tool to classical shape analysis, especially when size is non-informative. Shapes are typically described by the location of user-chosen landmarks. However the shape – considered as invariant under scaling, translation, mirroring and rotation – does not uniquely define the location of landmarks. A simple approach is to use distances of landmarks instead of the locations of landmarks them self. Distances are positive numbers defined up to joint scaling, a mathematical structure quite similar to compositions. The shape fixes only ratios of distances. Perturbations correspond to relative changes of the size of subshapes and of aspect ratios. The power transform increases the expression of the shape by increasing distance ratios. In analogy to the subcompositional consistency, results should not depend too much on the choice of distances, because different subsets of the pairwise distances of landmarks uniquely define the shape. Various compositional analysis tools can be applied to sets of distances directly or after minor modifications concerning the singularity of the covariance matrix and yield results with direct interpretations in terms of shape changes. The remaining problem is that not all sets of distances correspond to a valid shape. Nevertheless interpolated or predicted shapes can be backtransformated by multidimensional scaling (when all pairwise distances are used) or free geodetic adjustment (when sufficiently many distances are used)
Resumo:
The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principal component analysis allow to model compositional changes compared with a reference point. The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling
Resumo:
The Dirichlet family owes its privileged status within simplex distributions to easyness of interpretation and good mathematical properties. In particular, we recall fundamental properties for the analysis of compositional data such as closure under amalgamation and subcomposition. From a probabilistic point of view, it is characterised (uniquely) by a variety of independence relationships which makes it indisputably the reference model for expressing the non trivial idea of substantial independence for compositions. Indeed, its well known inadequacy as a general model for compositional data stems from such an independence structure together with the poorness of its parametrisation. In this paper a new class of distributions (called Flexible Dirichlet) capable of handling various dependence structures and containing the Dirichlet as a special case is presented. The new model exhibits a considerably richer parametrisation which, for example, allows to model the means and (part of) the variance-covariance matrix separately. Moreover, such a model preserves some good mathematical properties of the Dirichlet, i.e. closure under amalgamation and subcomposition with new parameters simply related to the parent composition parameters. Furthermore, the joint and conditional distributions of subcompositions and relative totals can be expressed as simple mixtures of two Flexible Dirichlet distributions. The basis generating the Flexible Dirichlet, though keeping compositional invariance, shows a dependence structure which allows various forms of partitional dependence to be contemplated by the model (e.g. non-neutrality, subcompositional dependence and subcompositional non-invariance), independence cases being identified by suitable parameter configurations. In particular, within this model substantial independence among subsets of components of the composition naturally occurs when the subsets have a Dirichlet distribution
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data
Resumo:
Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades.