4 resultados para Conformation
em Universitat de Girona, Spain
Resumo:
Charge transfer properties of DNA depend strongly on the π stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V2, between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G15. The average value of the coupling squared 〈 V2 〉 is found to be 0.0065 eV2. Then we analyze the base-pair and step parameters of the configurations in which V2 is at least an order of magnitude larger than 〈 V2 〉. To obtain more consistent data, ∼65 000 configurations of the (G:C)2 stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20°) are of special interest, because the π stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30° and 35°, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist38°) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics
Resumo:
In this study we report on the electronic and vibrational (hyper)polarizabilities of donor–acceptorsubstituted azobenzene. It is observed that both electronic and vibrational contributions to the electric dipole first hyperpolarizability of investigated photoactive molecule substantially depend on the conformation. The contributions to the nuclear relaxation first hyperpolarizability are found to be quite important in the case of two considered isomers (cis and trans). Although the double-harmonic term is found to be the largest in terms of magnitude, it is shown that the total value of the nuclear relaxation contribution to vibrational first hyperpolarizability is a result of subtle interplay of higher-order contributions. As a part of the study, we also assess the performance of long-range-corrected density functional theory in determining vibrational contributions to electric dipole (hyper)polarizabilities. In most cases, the applied long-range-corrected exchange correlation potentials amend the drawbacks of their conventional counterparts
Resumo:
Es presenta el model atòmic a 4.5 Å de DnaB, la principal helicasa replicativa bacteriana, d'Aquifex aeolicus. És un anell hexamèric de 100 Å d'amplada i 80 Å d'alçada amb dues capes de simetria diferenciada, la dels dominis N-terminals en C3 i la dels C-terminals propera a C6. El diàmetre central és de 25 Å al llarg d'ambdues capes, principal diferència amb les estructures prèvies, on era 25 Å més estret a la capa N-terminal. L'estretament s'origina pel trencament d'una de les dues superfícies d'interacció entre monòmers N-terminals, cosa que augmenta la flexibilitat del subdomini implicat. Només l'ssDNA pot atravessar l'anell, quan a les estructures prèvies hi podia passar tant ssDNA com dsDNA. L'estructura aquí presentada és més propera a la conformació funcional de DnaB durant la realització de l'activitat helicasa, mentre que les anteriors correspondrien a la forma inactiva o a la conformació capaç de translocar-se sobre dsDNA.
Resumo:
This PhD thesis is the result of the combination of experimental and computational techniques with the aim of understanding the mechanism of action of de novo cyclic decapeptides with high antimicrobial activity. By experimental techniques the influence of the replacement of the phenylalanine for tryptophan residue in their antimicrobial activity was tested and the stability in human serum was also analyzed, in order to evaluate their potential therapeutic application as antitumor agents. On the other hand, the interaction amongst the peptide BPC194 c(KKLKKFKKLQ), the best candidate from the whole library of cyclic peptides, and a model anionic membrane was simulated. The results showed a structure-function relationship derived from the stable conformation of the peptides involved in the membrane permeabilization. As a result, a rational design was performed being BPC490 the peptide with best antimicrobial activity compared with the best active peptide from the original library.