3 resultados para Computer input-output equipment.

em Universitat de Girona, Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project is a Web Geographic Information System built on an Open Source geographic structure like MapServer (Minnesota University) and PostgreSQL/PostGIS (object relational database management system). The study case is a web site for expeditions in a specific Brazilian region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We've developed a new ambient occlusion technique based on an information-theoretic framework. Essentially, our method computes a weighted visibility from each object polygon to all viewpoints; we then use these visibility values to obtain the information associated with each polygon. So, just as a viewpoint has information about the model's polygons, the polygons gather information on the viewpoints. We therefore have two measures associated with an information channel defined by the set of viewpoints as input and the object's polygons as output, or vice versa. From this polygonal information, we obtain an occlusion map that serves as a classic ambient occlusion technique. Our approach also offers additional applications, including an importance-based viewpoint-selection guide, and a means of enhancing object features and producing nonphotorealistic object visualizations