3 resultados para Classificació AMS::55 Algebraic topology::55P Homotopy theory

em Universitat de Girona, Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjunts borrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. La verificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives. Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi. En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casos fonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'una relació borrosa amb l'ajuda d'experts i de sèries estadístiques. El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesures conjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquen unes propietats de caràcter conjuntista prou satisfactòries. L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que són estudiades amb una certa profunditat en alguns casos particulars. El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateix conjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètode de clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa amb el mètode de clusterització. El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en el cas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc, l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certes variables borroses es presenta al final del capítol. L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals. S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procés de clusterització. Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matrius de mesura i les seves clausures.