2 resultados para Chicago Climate Exchange
em Universitat de Girona, Spain
Resumo:
The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35ºC), the I106A variant (35ºC), and the V108G variant (10ºC) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 1 EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-size spectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems