2 resultados para Causality-in-variance

em Universitat de Girona, Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper sets out to identify the initial positions of the different decision makers who intervene in a group decision making process with a reduced number of actors, and to establish possible consensus paths between these actors. As a methodological support, it employs one of the most widely-known multicriteria decision techniques, namely, the Analytic Hierarchy Process (AHP). Assuming that the judgements elicited by the decision makers follow the so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown variance, a Bayesian approach is used in the estimation of the relative priorities of the alternatives being compared. These priorities, estimated by way of the median of the posterior distribution and normalised in a distributive manner (priorities add up to one), are a clear example of compositional data that will be used in the search for consensus between the actors involved in the resolution of the problem through the use of Multidimensional Scaling tools

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.