8 resultados para Carnap Entropy
em Universitat de Girona, Spain
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
We've developed a new ambient occlusion technique based on an information-theoretic framework. Essentially, our method computes a weighted visibility from each object polygon to all viewpoints; we then use these visibility values to obtain the information associated with each polygon. So, just as a viewpoint has information about the model's polygons, the polygons gather information on the viewpoints. We therefore have two measures associated with an information channel defined by the set of viewpoints as input and the object's polygons as output, or vice versa. From this polygonal information, we obtain an occlusion map that serves as a classic ambient occlusion technique. Our approach also offers additional applications, including an importance-based viewpoint-selection guide, and a means of enhancing object features and producing nonphotorealistic object visualizations
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges
Resumo:
Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (ΔH#), and activation entropy (ΔS#) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative ΔH# of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro114 isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the β-hairpin comprising Trp115. A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funne
Resumo:
This thesis addresses the problem of learning in physical heterogeneous multi-agent systems (MAS) and the analysis of the benefits of using heterogeneous MAS with respect to homogeneous ones. An algorithm is developed for this task; building on a previous work on stability in distributed systems by Tad Hogg and Bernardo Huberman, and combining two phenomena observed in natural systems, task partition and hierarchical dominance. This algorithm is devised for allowing agents to learn which are the best tasks to perform on the basis of each agent's skills and the contribution to the team global performance. Agents learn by interacting with the environment and other teammates, and get rewards from the result of the actions they perform. This algorithm is specially designed for problems where all robots have to co-operate and work simultaneously towards the same goal. One example of such a problem is role distribution in a team of heterogeneous robots that form a soccer team, where all members take decisions and co-operate simultaneously. Soccer offers the possibility of conducting research in MAS, where co-operation plays a very important role in a dynamical and changing environment. For these reasons and the experience of the University of Girona in this domain, soccer has been selected as the test-bed for this research. In the case of soccer, tasks are grouped by means of roles. One of the most interesting features of this algorithm is that it endows MAS with a high adaptability to changes in the environment. It allows the team to perform their tasks, while adapting to the environment. This is studied in several cases, for changes in the environment and in the robot's body. Other features are also analysed, especially a parameter that defines the fitness (biological concept) of each agent in the system, which contributes to performance and team adaptability. The algorithm is applied later to allow agents to learn in teams of homogeneous and heterogeneous robots which roles they have to select, in order to maximise team performance. The teams are compared and the performance is evaluated in the games against three hand-coded teams and against the different homogeneous and heterogeneous teams built in this thesis. This section focuses on the analysis of performance and task partition, in order to study the benefits of heterogeneity in physical MAS. In order to study heterogeneity from a rigorous point of view, a diversity measure is developed building on the hierarchic social entropy defined by Tucker Balch. This is adapted to quantify physical diversity in robot teams. This tool presents very interesting features, as it can be used in the future to design heterogeneous teams on the basis of the knowledge on other teams.