3 resultados para Botanical exploration
em Universitat de Girona, Spain
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
In Catalonia, according to the nitrate directive (91/676/EU), nine areas have been declared as vulnerable to nitrate pollution from agricultural sources (Decret 283/1998 and Decret 479/2004). Five of these areas have been studied coupling hydro chemical data with a multi-isotopic approach (Vitòria et al. 2005, Otero et al. 2007, Puig et al. 2007), in an ongoing research project looking for an integrated application of classical hydrochemistry data, with a comprehensive isotopic characterisation (δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δD and δ18O of water). Within this general frame, the contribution presented explores compositional ways of: (i) distinguish agrochemicals and manure N pollution, (ii) quantify natural attenuation of nitrate (denitrification), and identify possible controlling factors. To achieve this two-fold goal, the following techniques have been used. Separate biplots of each suite of data show that each studied region has a distinct δ34S and pH signatures, but they are homogeneous with regard to NO3- related variables. Also, the geochemical variables were projected onto the compositional directions associated with the possible denitrification reactions in each region. The resulting balances can be plot together with some isotopes, to assess their likelihood of occurrence
Resumo:
The area known as 'prats de Sant Sebastià' is in Caldes de Malavella. It is part of the wetlands located in the south-eastern end of the Selva Basin. Several areas with unusually high conductivity (EC up to 24,500 uS/cm) have been identified in this place. This fact allows highly specialised and comparatively rare botanical species to grow in this area. These saline soils follow a north-south line-up. The geophysical data, obtained with a field conductivemeter (EM 31), show that this superficial line-up continues in the subsoil. In addition to this, the conductivity cartography, made for an electromagnetic exploration depth of 6 meters, shows that the width of the region where these salinity anomalies take place increases in depth. When included in the hidrogeological context of this sector of the Selva Basin, these data bring new elements for the study of the genesis and working of these marshy environments. The model that future research will have to confirm, maintains that the groundwater discharges coming from the underlying hydrogeothermal aquifer are a conditioning factor of the aforementioned phenomenon. This ascending flow of highly mineralised waters (TDS of about 3,500 mg/l) can produce and keep stable the soil salinity