3 resultados para Bayesian hierarchical model
em Universitat de Girona, Spain
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data. Many of the issues that are discussed with reference to the statistical analysis of compositional data have a natural counterpart in the construction of a Bayesian statistical model for categorical data. This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986) in his seminal book on compositional data. Particular emphasis is put on the problem of what parameterization to use
Resumo:
This paper sets out to identify the initial positions of the different decision makers who intervene in a group decision making process with a reduced number of actors, and to establish possible consensus paths between these actors. As a methodological support, it employs one of the most widely-known multicriteria decision techniques, namely, the Analytic Hierarchy Process (AHP). Assuming that the judgements elicited by the decision makers follow the so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown variance, a Bayesian approach is used in the estimation of the relative priorities of the alternatives being compared. These priorities, estimated by way of the median of the posterior distribution and normalised in a distributive manner (priorities add up to one), are a clear example of compositional data that will be used in the search for consensus between the actors involved in the resolution of the problem through the use of Multidimensional Scaling tools
Resumo:
Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted